Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02215, USA.
Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
Am J Hum Genet. 2022 Apr 7;109(4):738-749. doi: 10.1016/j.ajhg.2022.03.001. Epub 2022 Mar 21.
A challenge in standard genetic studies is maintaining good power to detect associations, especially for low prevalent diseases and rare variants. The traditional methods are most powerful when evaluating the association between variants in balanced study designs. Without accounting for family correlation and unbalanced case-control ratio, these analyses could result in inflated type I error. One cost-effective solution to increase statistical power is exploitation of available family history (FH) that contains valuable information about disease heritability. Here, we develop methods to address the aforementioned type I error issues while providing optimal power to analyze aggregates of rare variants by incorporating additional information from FH. With enhanced power in these methods exploiting FH and accounting for relatedness and unbalanced designs, we successfully detect genes with suggestive associations with Alzheimer disease, dementia, and type 2 diabetes by using the exome chip data from the Framingham Heart Study.
在标准的遗传研究中,面临的一个挑战是保持良好的关联检测能力,特别是对于低流行疾病和罕见变异。在评估平衡研究设计中变异之间的关联时,传统方法最有效。如果不考虑家族相关性和不平衡的病例对照比,这些分析可能会导致Ⅰ型错误膨胀。增加统计功效的一种具有成本效益的解决方案是利用现有的家族史(FH),其中包含有关疾病遗传性的有价值信息。在这里,我们开发了方法来解决上述Ⅰ型错误问题,同时通过纳入 FH 中的额外信息,为分析罕见变异的聚合体提供最佳功效。通过利用 FH 并考虑相关性和不平衡设计来增强这些方法的功效,我们成功地利用弗雷明汉心脏研究的外显子芯片数据检测到与阿尔茨海默病、痴呆和 2 型糖尿病具有提示性关联的基因。