Suppr超能文献

动态网络连通性揭示帕金森病深部脑刺激反应的标志物

Dynamic Network Connectivity Reveals Markers of Response to Deep Brain Stimulation in Parkinson's Disease.

作者信息

Wu Chengyuan, Matias Caio, Foltynie Thomas, Limousin Patricia, Zrinzo Ludvic, Akram Harith

机构信息

Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States.

Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States.

出版信息

Front Hum Neurosci. 2021 Oct 6;15:729677. doi: 10.3389/fnhum.2021.729677. eCollection 2021.

Abstract

Neuronal loss in Parkinson's Disease (PD) leads to widespread neural network dysfunction. While graph theory allows for analysis of whole brain networks, patterns of functional connectivity (FC) associated with motor response to deep brain stimulation of the subthalamic nucleus (STN-DBS) have yet to be explored. To investigate the distributed network properties associated with STN-DBS in patients with advanced PD. Eighteen patients underwent 3-Tesla resting state functional MRI (rs-fMRI) prior to STN-DBS. Improvement in UPDRS-III scores following STN-DBS were assessed 1 year after implantation. Independent component analysis (ICA) was applied to extract spatially independent components (ICs) from the rs-fMRI. FC between ICs was calculated across the entire time series and for dynamic brain states. Graph theory analysis was performed to investigate whole brain network topography in static and dynamic states. Dynamic analysis identified two unique brain states: a relative hypoconnected state and a relative hyperconnected state. Time spent in a state, dwell time, and number of transitions were not correlated with DBS response. There were no significant FC findings, but graph theory analysis demonstrated significant relationships with STN-DBS response only during the hypoconnected state - STN-DBS was negatively correlated with network assortativity. Given the widespread effects of dopamine depletion in PD, analysis of whole brain networks is critical to our understanding of the pathophysiology of this disease. Only by leveraging graph theoretical analysis of dynamic FC were we able to isolate a hypoconnected brain state that contained distinct network properties associated with the clinical effects of STN-DBS.

摘要

帕金森病(PD)中的神经元丢失会导致广泛的神经网络功能障碍。虽然图论可用于分析全脑网络,但与丘脑底核深部脑刺激(STN-DBS)的运动反应相关的功能连接(FC)模式尚未得到探索。为了研究晚期PD患者中与STN-DBS相关的分布式网络特性。18名患者在接受STN-DBS之前进行了3特斯拉静息态功能磁共振成像(rs-fMRI)。在植入后1年评估STN-DBS后统一帕金森病评定量表第三部分(UPDRS-III)评分的改善情况。应用独立成分分析(ICA)从rs-fMRI中提取空间独立成分(IC)。计算IC之间在整个时间序列以及动态脑状态下的FC。进行图论分析以研究静态和动态状态下的全脑网络拓扑结构。动态分析确定了两种独特的脑状态:相对低连接状态和相对高连接状态。处于一种状态的时间、停留时间和转换次数与DBS反应无关。没有显著的FC结果,但图论分析仅在低连接状态下显示出与STN-DBS反应的显著关系——STN-DBS与网络聚集性呈负相关。鉴于多巴胺耗竭在PD中的广泛影响,全脑网络分析对于我们理解这种疾病的病理生理学至关重要。只有通过利用动态FC的图论分析,我们才能分离出一种低连接脑状态,该状态包含与STN-DBS临床效果相关的独特网络特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/935a/8526554/cbbd69616b84/fnhum-15-729677-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验