Argyle Phoebe A, Hinners Jana, Walworth Nathan G, Collins Sinead, Levine Naomi M, Doblin Martina A
Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia.
Institute of Coastal Ocean Dynamics, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany.
Front Microbiol. 2021 Oct 6;12:706235. doi: 10.3389/fmicb.2021.706235. eCollection 2021.
High-throughput methods for phenotyping microalgae are in demand across a variety of research and commercial purposes. Many microalgae can be readily cultivated in multi-well plates for experimental studies which can reduce overall costs, while measuring traits from low volume samples can reduce handling. Here we develop a high-throughput quantitative phenotypic assay (QPA) that can be used to phenotype microalgae grown in multi-well plates. The QPA integrates 10 low-volume, relatively high-throughput trait measurements (growth rate, cell size, granularity, chlorophyll a, neutral lipid content, silicification, reactive oxygen species accumulation, and photophysiology parameters: ETRmax, I, and alpha) into one workflow. We demonstrate the utility of the QPA on spp., a cosmopolitan marine diatom, phenotyping six strains in a standard nutrient rich environment (f/2 media) using the full 10-trait assay. The multivariate phenotypes of strains can be simplified into two dimensions using principal component analysis, generating a trait-scape. We determine that traits show a consistent pattern when grown in small volume compared to more typical large volumes. The QPA can thus be used for quantifying traits across different growth environments without requiring exhaustive large-scale culturing experiments, which facilitates experiments on trait plasticity. We confirm that this assay can be used to phenotype newly isolated diatom strains within 4 weeks of isolation. The QPA described here is highly amenable to customisation for other traits or unicellular taxa and provides a framework for designing high-throughput experiments. This method will have applications in experimental evolution, modelling, and for commercial applications where screening of phytoplankton traits is of high importance.
在各种研究和商业用途中,都需要用于微藻表型分析的高通量方法。许多微藻可以很容易地在多孔板中培养用于实验研究,这可以降低总体成本,同时对少量样品进行性状测量可以减少操作量。在此,我们开发了一种高通量定量表型分析方法(QPA),可用于对在多孔板中生长的微藻进行表型分析。该QPA将10项低体积、相对高通量的性状测量(生长速率、细胞大小、粒度、叶绿素a、中性脂质含量、硅化作用、活性氧积累以及光生理学参数:最大电子传递速率、光强和光响应曲线初始斜率)整合到一个工作流程中。我们使用完整的10性状分析方法,在标准富营养环境(f/2培养基)中对一种广泛分布的海洋硅藻—— 属的六个菌株进行表型分析,证明了QPA的实用性。使用主成分分析可以将菌株的多变量表型简化为两个维度,生成一个性状图谱。我们确定,与更典型的大体积培养相比,小体积培养时性状呈现出一致的模式。因此,QPA可用于量化不同生长环境下的性状,而无需进行详尽的大规模培养实验,这便于进行性状可塑性实验。我们证实,该分析方法可用于在新分离的硅藻菌株分离后4周内对其进行表型分析。本文所述的QPA非常适合针对其他性状或单细胞类群进行定制,并为设计高通量实验提供了一个框架。该方法将在实验进化、建模以及浮游植物性状筛选非常重要的商业应用中发挥作用。