Guan Qing-Fang, Han Zi-Meng, Luo Tong-Tong, Yang Huai-Bin, Liang Hai-Wei, Chen Si-Ming, Wang Guang-Sheng, Yu Shu-Hong
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
School of Chemistry and Environment, Beihang University, Beijing 100191, China.
Natl Sci Rev. 2019 Jan;6(1):64-73. doi: 10.1093/nsr/nwy144. Epub 2018 Nov 23.
Although a variety of nanoparticles with better-than-bulk material performances can be synthesized, it remains a challenge to scale the extraordinary properties of individual nanoscale units to the macroscopic level for bulk nanostructured materials. Here, we report a general and scalable biosynthesis strategy that involves simultaneous growth of cellulose nanofibrils through microbial fermentation and co-deposition of various kinds of nanoscale building blocks (NBBs) through aerosol feeding on solid culture substrates. We employ this biosynthesis strategy to assemble a wide range of NBBs into cellulose nanofibril-based bulk nanocomposites. In particular, the biosynthesized carbon nanotubes/bacterial cellulose nanocomposites that consist of integrated 3D cellulose nanofibril networks simultaneously achieve an extremely high mechanical strength and electrical conductivity, and thus exhibit outstanding performance as high-strength lightweight electromagnetic interference shielding materials. The biosynthesis approach represents a general and efficient strategy for large-scale production of functional bulk nanocomposites with enhanced performances for practical applications. Industrial-scale production of these bulk nanocomposite materials for practical applications can be expected in the near future.
尽管可以合成各种性能优于块状材料的纳米颗粒,但将单个纳米级单元的非凡特性扩展到宏观层面以用于块状纳米结构材料仍然是一项挑战。在此,我们报告了一种通用且可扩展的生物合成策略,该策略涉及通过微生物发酵同时生长纤维素纳米纤维,并通过在固体培养底物上进行气溶胶进料共沉积各种纳米级构建块(NBBs)。我们采用这种生物合成策略将多种NBBs组装成基于纤维素纳米纤维的块状纳米复合材料。特别是,由集成的3D纤维素纳米纤维网络组成的生物合成碳纳米管/细菌纤维素纳米复合材料同时实现了极高的机械强度和电导率,因此作为高强度轻质电磁干扰屏蔽材料表现出卓越的性能。这种生物合成方法代表了一种通用且有效的策略,用于大规模生产具有增强性能的功能性块状纳米复合材料以用于实际应用。预计在不久的将来可以实现这些块状纳米复合材料的工业规模生产以用于实际应用。