Suppr超能文献

超薄金属有机骨架纳米带

Ultra-thin metal-organic framework nanoribbons.

作者信息

Wang Bingqing, Zhao Meiting, Li Liuxiao, Huang Ying, Zhang Xiao, Guo Chong, Zhang Zhicheng, Cheng Hongfei, Liu Wenxian, Shang Jing, Jin Jing, Sun Xiaoming, Liu Junfeng, Zhang Hua

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

出版信息

Natl Sci Rev. 2020 Jan;7(1):46-52. doi: 10.1093/nsr/nwz118. Epub 2019 Aug 13.

Abstract

Structure engineering of metal-organic frameworks (MOFs) at the nanometer scale is attracting increasing interest due to their unique properties and new functions that normally cannot be achieved in bulk MOF crystals. Here, we report the preparation of ultra-thin MOF nanoribbons (NRBs) by using metal-hydroxide nanostructures as the precursors. Importantly, this general method can be used to synthesize various kinds of ultra-thin MOF NRBs, such as MBDC (M = Co, Ni; BDC = 1,4-benzenedicarboxylate), NiCoBDC, CoTCPP (TCPP = tetrakis(4-carboxyphenyl)porphyrin) and MIL-53(Al) NRBs. As a proof-of-concept application, the as-prepared ultra-thin CoBDC NRBs have been successfully used as a fluorescent sensing platform for DNA detection, which exhibited excellent sensitivity and selectivity. The present strategy might open an avenue to prepare MOF nanomaterials with new structures and unique properties for various promising applications.

摘要

由于金属有机框架材料(MOFs)具有独特的性质和通常在块状MOF晶体中无法实现的新功能,其在纳米尺度上的结构工程正吸引着越来越多的关注。在此,我们报道了以金属氢氧化物纳米结构为前驱体制备超薄MOF纳米带(NRBs)的方法。重要的是,这种通用方法可用于合成各种超薄MOF NRBs,如MBDC(M = Co、Ni;BDC = 1,4-苯二甲酸)、NiCoBDC、CoTCPP(TCPP = 四(4-羧基苯基)卟啉)和MIL-53(Al) NRBs。作为概念验证应用,所制备的超薄CoBDC NRBs已成功用作DNA检测的荧光传感平台,表现出优异的灵敏度和选择性。目前的策略可能为制备具有新结构和独特性质的MOF纳米材料开辟一条途径,以用于各种有前景的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741f/8288949/ad12497b50ce/nwz118figs1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验