Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Acc Chem Res. 2020 Jul 21;53(7):1389-1400. doi: 10.1021/acs.accounts.0c00268. Epub 2020 Jun 29.
Nanozymes, which integrate the advantages of both nanomaterials and natural enzymes, have accumulated enormous research interest over the past decades because of the opportunity they provide to appreciate and further cultivate artificial enzymes with comparable properties. By mimicking the coordination environments of the catalytic sites in natural enzymes, nanozymes with confined nanostructures can serve as substitutes in many catalytic processes with comparable activity and robust stability even in harsh conditions. Since the pioneering report about peroxidase-mimicking ferromagnetic nanoparticles in 2007, nanozymes have been developed as specialized for nanomaterials with intrinsic enzyme-mimicking property. With the rapid development in nanoscience and nanotechnology, nanomaterials with superior advantages, such as large-scale production, desired activity, and robust stability, can bridge the natural enzymes with nanozymes.Metal-organic frameworks (MOFs) and their derivatives hold great promise to serve as direct surrogates of conventional enzymes for enzymatic reactions. According to their chemical nature, MOF-based nanozymes can be divided into three main categories: pristine MOFs, enzyme-encapsulated MOF composites, and MOF-based derivatives. Due to the versatility of metallic nodes and bridging linkers together with the feasibility of postsynthetic engineering and modification, MOFs and their derivatives are envisioned as one of the most appropriate surrogates for this purpose. Using MOFs as precursors or sacrificial templates, multiple MOF-based derivatives including carbon-based nanomaterials (e.g., heteroatom-doped carbon or carbon with M-N-C moiety), metal oxide/carbon nanoparticles, and metal/carbon nanomaterials can be rationally synthesized through one-step direct carbonization/oxidation or indirect post-synthesis treatments of MOFs (e.g., bridging linker-exchange and metallic node-doping). Compared with existing nanozymes, MOF-based derivatives open up a new avenue for constructing mesoporous nanozymes. In this way, the intrinsic mesoporous properties of MOFs can still be maintained, while the stability and activity can be greatly improved. In this Account, we highlight some important research advances in MOF-based derivatives (including M-N-C moieties (M = single metal atom), metal oxide/carbon, metal/carbon, and MOF derivatives obtained through postsynthetic linker exchange and metal doping strategies) with enzyme-mimicking activity. We also demonstrate that, through integrating physicochemical properties of mesoporous nanomaterials and enzymatic activities of natural enzymes, MOF-derived nanozymes can provide multifunctional platforms in biomedical fields such as antibacterial agents, biosensors, imaging, cancer therapy, and environmental protection. Finally, we propose future design principles and possible research approaches for deeper understanding of mechanisms, thus pointing out future research directions to offer more opportunities for the conventional enzyme-engineering industry.
纳米酶结合了纳米材料和天然酶的优势,在过去几十年中引起了极大的研究兴趣,因为它们为人们提供了机会,可以欣赏和进一步培养具有可比性质的人工酶。通过模拟天然酶催化部位的配位环境,具有受限纳米结构的纳米酶可以在许多催化过程中替代具有可比活性和稳健稳定性的酶,即使在恶劣条件下也是如此。自 2007 年关于过氧化物酶模拟铁磁纳米粒子的开创性报告以来,纳米酶已被开发为具有内在酶模拟特性的纳米材料的专用材料。随着纳米科学和纳米技术的快速发展,具有大规模生产、所需活性和稳健稳定性等优势的纳米材料可以将天然酶与纳米酶联系起来。金属有机骨架 (MOFs) 及其衍生物有望成为酶促反应中常规酶的直接替代品。根据其化学性质,基于 MOF 的纳米酶可分为三大类:原始 MOF、包封酶的 MOF 复合材料和基于 MOF 的衍生物。由于金属节点和桥连配体的多功能性以及后合成工程和修饰的可行性,MOF 及其衍生物被认为是最适合此目的的替代品之一。使用 MOF 作为前体或牺牲模板,通过一步直接碳化/氧化或 MOF 的间接后合成处理(例如桥接配体交换和金属节点掺杂),可以合理地合成多种 MOF 基衍生物,包括碳基纳米材料(例如,杂原子掺杂碳或具有 M-N-C 部分的碳)、金属氧化物/碳纳米粒子和金属/碳纳米材料。与现有的纳米酶相比,基于 MOF 的衍生物为构建介孔纳米酶开辟了新途径。这样,MOF 的固有介孔特性仍然可以保持,而稳定性和活性可以大大提高。在本报告中,我们重点介绍了具有酶模拟活性的 MOF 基衍生物(包括 M-N-C 部分(M=单金属原子)、金属氧化物/碳、金属/碳和通过后合成配体交换和金属掺杂策略获得的 MOF 衍生物)的一些重要研究进展。我们还证明,通过整合介孔纳米材料的物理化学性质和天然酶的酶活性,MOF 衍生的纳米酶可以在抗菌剂、生物传感器、成像、癌症治疗和环境保护等生物医学领域提供多功能平台。最后,我们提出了更深入理解机制的未来设计原则和可能的研究方法,从而指出了未来的研究方向,为传统的酶工程产业提供了更多的机会。