Suppr超能文献

仇恨与政治:意大利推文中针对政策制定者的仇恨检测

Hate versus politics: detection of hate against policy makers in Italian tweets.

作者信息

Duzha Armend, Casadei Cristiano, Tosi Michael, Celli Fabio

机构信息

Maggioli S.p.A, Via Bornaccino 101, 47822 Santarcangelo di Romagna, Italy.

出版信息

SN Soc Sci. 2021;1(9):223. doi: 10.1007/s43545-021-00234-2. Epub 2021 Aug 20.

Abstract

Accurate detection of hate speech against politicians, policy making and political ideas is crucial to maintain democracy and free speech. Unfortunately, the amount of labelled data necessary for training models to detect hate speech are limited and domain-dependent. In this paper, we address the issue of classification of hate speech against policy makers from Twitter in Italian, producing the first resource of this type in this language. We collected and annotated 1264 tweets, examined the cases of disagreements between annotators, and performed in-domain and cross-domain hate speech classifications with different features and algorithms. We achieved a performance of ROC AUC 0.83 and analyzed the most predictive attributes, also finding the different language features in the anti-policymakers and anti-immigration domains. Finally, we visualized networks of hashtags to capture the topics used in hateful and normal tweets.

摘要

准确检测针对政治家、政策制定和政治理念的仇恨言论对于维护民主和言论自由至关重要。不幸的是,训练模型以检测仇恨言论所需的标注数据量有限且依赖于领域。在本文中,我们解决了意大利语推特上针对政策制定者的仇恨言论分类问题,生成了该语言下的首个此类资源。我们收集并标注了1264条推文,检查了标注者之间的分歧情况,并使用不同的特征和算法进行了领域内和跨领域的仇恨言论分类。我们取得了ROC AUC为0.83的性能,并分析了最具预测性的属性,还发现了反政策制定者和反移民领域中不同的语言特征。最后,我们可视化了主题标签网络,以捕捉仇恨推文和正常推文中使用的主题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb8/8376292/1ea27137cd88/43545_2021_234_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验