Suppr超能文献

低剂量 CT、常规剂量 CT 和数字化 X 射线摄影在肺结节检测、读片时间和患者剂量方面的比较。

COMPARISON OF PULMONARY NODULE DETECTION, READING TIMES AND PATIENT DOSES OF ULTRA-LOW DOSE CT, STANDARD DOSE CT AND DIGITAL RADIOGRAPHY.

机构信息

Centre for Research and Development, Uppsala University, Region Gävleborg, 801 88 Gävle, Sweden.

Department of Imaging and functional medicine, Division diagnostics, Gävle hospital, Region Gävleborg, 801 88, Gävle, Sweden.

出版信息

Radiat Prot Dosimetry. 2021 Nov 12;196(3-4):234-240. doi: 10.1093/rpd/ncab154.

Abstract

The purpose of the present work was to evaluate performance in pulmonary nodule detection, reading times and patient doses for ultra-low dose computed tomography (ULD-CT), standard dose chest CT (SD-CT), and digital radiography (DR). Pulmonary nodules were simulated in an anthropomorphic lung phantom. Thirty cases, 18 with lesions (45 total lesions of 3-12 mm) and 12 without lesions were acquired for each imaging modality. Three radiologists interpreted the cases in a free-response study. Performance was assessed using the JAFROC figure-of-merit (FOM). Performance was not significantly different between ULD-CT and SD-CT (FOMs: 0.787 vs 0.814; ΔFOM: 0.03), but both CT techniques were superior to DR (FOM: 0.541; ΔFOM: 0.31 and 0.28). Overall, the CT modalities took longer time to interpret than DR. ULD chest CT may serve as an alternative to both SD-CT and conventional radiography, considerably reducing dose in the first case and improving diagnostic accuracy in the second.

摘要

本研究旨在评估肺结节检测、阅读时间和患者剂量方面的性能,比较超小剂量 CT(ULD-CT)、标准剂量 CT(SD-CT)和数字 X 射线摄影(DR)。在人体肺模型中模拟肺结节。对于每种成像方式,均采集 30 例病例,其中 18 例有病变(45 个 3-12mm 的病变),12 例无病变。3 位放射科医生在自由响应研究中解释了这些病例。使用 JAFROC 性能指标(FOM)评估性能。ULD-CT 和 SD-CT 的性能没有显著差异(FOM:0.787 与 0.814;ΔFOM:0.03),但这两种 CT 技术均优于 DR(FOM:0.541;ΔFOM:0.31 和 0.28)。总的来说,CT 方式的解释时间长于 DR。ULD-CT 可能是 SD-CT 和常规 X 射线摄影的替代方法,在第一种情况下大大降低剂量,在第二种情况下提高诊断准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验