Department of Computer Science, FLAME University, Pune, Maharashtra, India.
School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur, Tamilnadu, India.
J Bioinform Comput Biol. 2021 Oct;19(5):2150028. doi: 10.1142/S0219720021500281. Epub 2021 Oct 22.
Bacterial virulence can be attributed to a wide variety of factors including toxins that harm the host. Pore-forming toxins are one class of toxins that confer virulence to the bacteria and are one of the promising targets for therapeutic intervention. In this work, we develop a sequence-based machine learning framework for the prediction of pore-forming toxins. For this, we have used distributed representation of the protein sequence encoded by reduced alphabet schemes based on conformational similarity and hydropathy index as input features to Support Vector Machines (SVMs). The choice of conformational similarity and hydropathy indices is based on the functional mechanism of pore-forming toxins. Our methodology achieves about 81% accuracy indicating that conformational similarity, an indicator of the flexibility of amino acids, along with hydrophobic index can capture the intrinsic features of pore-forming toxins that distinguish it from other types of transporter proteins. Increased understanding of the mechanisms of pore-forming toxins can further contribute to the use of such "mechanism-informed" features that may increase the prediction accuracy further.
细菌的毒力可归因于多种因素,包括伤害宿主的毒素。形成孔的毒素是赋予细菌毒力的一类毒素,也是治疗干预的有希望的靶点之一。在这项工作中,我们开发了一种基于序列的机器学习框架来预测形成孔的毒素。为此,我们使用基于构象相似性和疏水性指数的简化字母方案编码的蛋白质序列的分布式表示作为输入特征来支持向量机 (SVM)。构象相似性和疏水性指数的选择基于形成孔的毒素的功能机制。我们的方法实现了约 81%的准确率,表明构象相似性,即氨基酸柔韧性的指标,以及疏水性指数,可以捕获形成孔的毒素的固有特征,将其与其他类型的转运蛋白区分开来。对形成孔的毒素机制的深入了解可以进一步促进使用这种“机制知情”的特征,这可能会进一步提高预测的准确性。
J Bioinform Comput Biol. 2021-10
IEEE/ACM Trans Comput Biol Bioinform. 2023
BMC Bioinformatics. 2009-1-6
PLoS Pathog. 2011-3-3
Anaerobe. 2014-12
J Ind Microbiol Biotechnol. 2011-10-26
Biotechnol Genet Eng Rev. 2010
BMC Med Inform Decis Mak. 2025-5-27
Sci Rep. 2024-4-15