文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于支持向量机的使用简化字母集分布表示的孔形成毒素(PFT)预测。

Support vector machine-based prediction of pore-forming toxins (PFT) using distributed representation of reduced alphabets.

机构信息

Department of Computer Science, FLAME University, Pune, Maharashtra, India.

School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur, Tamilnadu, India.

出版信息

J Bioinform Comput Biol. 2021 Oct;19(5):2150028. doi: 10.1142/S0219720021500281. Epub 2021 Oct 22.


DOI:10.1142/S0219720021500281
PMID:34693886
Abstract

Bacterial virulence can be attributed to a wide variety of factors including toxins that harm the host. Pore-forming toxins are one class of toxins that confer virulence to the bacteria and are one of the promising targets for therapeutic intervention. In this work, we develop a sequence-based machine learning framework for the prediction of pore-forming toxins. For this, we have used distributed representation of the protein sequence encoded by reduced alphabet schemes based on conformational similarity and hydropathy index as input features to Support Vector Machines (SVMs). The choice of conformational similarity and hydropathy indices is based on the functional mechanism of pore-forming toxins. Our methodology achieves about 81% accuracy indicating that conformational similarity, an indicator of the flexibility of amino acids, along with hydrophobic index can capture the intrinsic features of pore-forming toxins that distinguish it from other types of transporter proteins. Increased understanding of the mechanisms of pore-forming toxins can further contribute to the use of such "mechanism-informed" features that may increase the prediction accuracy further.

摘要

细菌的毒力可归因于多种因素,包括伤害宿主的毒素。形成孔的毒素是赋予细菌毒力的一类毒素,也是治疗干预的有希望的靶点之一。在这项工作中,我们开发了一种基于序列的机器学习框架来预测形成孔的毒素。为此,我们使用基于构象相似性和疏水性指数的简化字母方案编码的蛋白质序列的分布式表示作为输入特征来支持向量机 (SVM)。构象相似性和疏水性指数的选择基于形成孔的毒素的功能机制。我们的方法实现了约 81%的准确率,表明构象相似性,即氨基酸柔韧性的指标,以及疏水性指数,可以捕获形成孔的毒素的固有特征,将其与其他类型的转运蛋白区分开来。对形成孔的毒素机制的深入了解可以进一步促进使用这种“机制知情”的特征,这可能会进一步提高预测的准确性。

相似文献

[1]
Support vector machine-based prediction of pore-forming toxins (PFT) using distributed representation of reduced alphabets.

J Bioinform Comput Biol. 2021-10

[2]
Identification of Phase Separating Proteins With Distributed Reduced Alphabet Representations of Sequences.

IEEE/ACM Trans Comput Biol Bioinform. 2023

[3]
Automated alphabet reduction for protein datasets.

BMC Bioinformatics. 2009-1-6

[4]
Global functional analyses of cellular responses to pore-forming toxins.

PLoS Pathog. 2011-3-3

[5]
Clostridial pore-forming toxins: powerful virulence factors.

Anaerobe. 2014-12

[6]
Sequence Diversity in the Pore-Forming Motifs of the Membrane-Damaging Protein Toxins.

J Membr Biol. 2020-10

[7]
Structural Basis and Functional Implications of the Membrane Pore-Formation Mechanisms of Bacterial Pore-Forming Toxins.

Adv Exp Med Biol. 2018

[8]
Prediction of ketoacyl synthase family using reduced amino acid alphabets.

J Ind Microbiol Biotechnol. 2011-10-26

[9]
Defense and death responses to pore forming toxins.

Biotechnol Genet Eng Rev. 2010

[10]
Incorporating amino acids composition and functional domains for identifying bacterial toxin proteins.

Biomed Res Int. 2014

引用本文的文献

[1]
Machine learning models for predicting in-hospital mortality from acute pancreatitis in intensive care unit.

BMC Med Inform Decis Mak. 2025-5-27

[2]
Artificial intelligence algorithms permits rapid acute kidney injury risk classification of patients with acute myocardial infarction.

Heliyon. 2024-8-8

[3]
Protein feature engineering framework for AMPylation site prediction.

Sci Rep. 2024-4-15

[4]
MultiToxPred 1.0: a novel comprehensive tool for predicting 27 classes of protein toxins using an ensemble machine learning approach.

BMC Bioinformatics. 2024-4-12

[5]
Machine Learning-Based Shear Wave Elastography Elastic Index (SWEEI) in Predicting Cervical Lymph Node Metastasis of Papillary Thyroid Microcarcinoma: A Comparative Analysis of Five Practical Prediction Models.

Cancer Manag Res. 2022-9-21

[6]
Predicting acute kidney injury risk in acute myocardial infarction patients: An artificial intelligence model using medical information mart for intensive care databases.

Front Cardiovasc Med. 2022-9-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索