文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MultiToxPred 1.0:一种新颖的综合工具,使用集成机器学习方法预测 27 类蛋白质毒素。

MultiToxPred 1.0: a novel comprehensive tool for predicting 27 classes of protein toxins using an ensemble machine learning approach.

机构信息

Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.

Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco, Chile.

出版信息

BMC Bioinformatics. 2024 Apr 12;25(1):148. doi: 10.1186/s12859-024-05748-z.


DOI:10.1186/s12859-024-05748-z
PMID:38609877
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11010298/
Abstract

Protein toxins are defense mechanisms and adaptations found in various organisms and microorganisms, and their use in scientific research as therapeutic candidates is gaining relevance due to their effectiveness and specificity against cellular targets. However, discovering these toxins is time-consuming and expensive. In silico tools, particularly those based on machine learning and deep learning, have emerged as valuable resources to address this challenge. Existing tools primarily focus on binary classification, determining whether a protein is a toxin or not, and occasionally identifying specific types of toxins. For the first time, we propose a novel approach capable of classifying protein toxins into 27 distinct categories based on their mode of action within cells. To accomplish this, we assessed multiple machine learning techniques and found that an ensemble model incorporating the Light Gradient Boosting Machine and Quadratic Discriminant Analysis algorithms exhibited the best performance. During the tenfold cross-validation on the training dataset, our model exhibited notable metrics: 0.840 accuracy, 0.827 F1 score, 0.836 precision, 0.840 sensitivity, and 0.989 AUC. In the testing stage, using an independent dataset, the model achieved 0.846 accuracy, 0.838 F1 score, 0.847 precision, 0.849 sensitivity, and 0.991 AUC. These results present a powerful next-generation tool called MultiToxPred 1.0, accessible through a web application. We believe that MultiToxPred 1.0 has the potential to become an indispensable resource for researchers, facilitating the efficient identification of protein toxins. By leveraging this tool, scientists can accelerate their search for these toxins and advance their understanding of their therapeutic potential.

摘要

蛋白质毒素是各种生物和微生物中发现的防御机制和适应机制,由于其对细胞靶标的有效性和特异性,它们在科学研究中作为治疗候选物的使用越来越受到关注。然而,发现这些毒素是耗时且昂贵的。基于机器学习和深度学习的计算工具已成为应对这一挑战的有价值的资源。现有的工具主要侧重于二进制分类,确定蛋白质是否是毒素,偶尔会识别特定类型的毒素。我们首次提出了一种新方法,能够根据蛋白质毒素在细胞内的作用方式将其分类为 27 个不同的类别。为了实现这一目标,我们评估了多种机器学习技术,发现集成模型(Light Gradient Boosting Machine 和 Quadratic Discriminant Analysis 算法)表现出最佳性能。在训练数据集的十折交叉验证中,我们的模型表现出了显著的指标:0.840 的准确率、0.827 的 F1 分数、0.836 的精度、0.840 的敏感性和 0.989 的 AUC。在测试阶段,使用独立数据集,模型的准确率为 0.846,F1 分数为 0.838,精度为 0.847,敏感性为 0.849,AUC 为 0.991。这些结果呈现了一种名为 MultiToxPred 1.0 的强大的下一代工具,可通过网络应用程序访问。我们相信 MultiToxPred 1.0 有可能成为研究人员不可或缺的资源,促进蛋白质毒素的高效识别。通过利用这个工具,科学家可以加速对这些毒素的搜索,并深入了解它们的治疗潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70a/11010298/14a9b36a28de/12859_2024_5748_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70a/11010298/14a9b36a28de/12859_2024_5748_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f70a/11010298/14a9b36a28de/12859_2024_5748_Fig1_HTML.jpg

相似文献

[1]
MultiToxPred 1.0: a novel comprehensive tool for predicting 27 classes of protein toxins using an ensemble machine learning approach.

BMC Bioinformatics. 2024-4-12

[2]
Prediction of viral oncoproteins through the combination of generative adversarial networks and machine learning techniques.

Sci Rep. 2024-11-7

[3]
PROTA: A Robust Tool for Protamine Prediction Using a Hybrid Approach of Machine Learning and Deep Learning.

Int J Mol Sci. 2024-9-24

[4]
Predicting viral proteins that evade the innate immune system: a machine learning-based immunoinformatics tool.

BMC Bioinformatics. 2024-11-9

[5]
Machine learning discrimination of Gleason scores below GG3 and above GG4 for HSPC patients diagnosis.

Sci Rep. 2024-10-27

[6]
Comparison of an Ensemble of Machine Learning Models and the BERT Language Model for Analysis of Text Descriptions of Brain CT Reports to Determine the Presence of Intracranial Hemorrhage.

Sovrem Tekhnologii Med. 2024

[7]
PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.

Bioinformatics. 2020-2-1

[8]
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.

BMC Public Health. 2024-6-28

[9]
Explore the factors related to the death of offspring under age five and appraise the hazard of child mortality using machine learning techniques in Bangladesh.

BMC Public Health. 2025-1-29

[10]
Prediction of diabetes disease using an ensemble of machine learning multi-classifier models.

BMC Bioinformatics. 2023-9-12

引用本文的文献

[1]
Exo-Tox: Identifying Exotoxins from secreted bacterial proteins.

BioData Min. 2025-8-8

[2]
Prediction of viral oncoproteins through the combination of generative adversarial networks and machine learning techniques.

Sci Rep. 2024-11-7

[3]
PROTA: A Robust Tool for Protamine Prediction Using a Hybrid Approach of Machine Learning and Deep Learning.

Int J Mol Sci. 2024-9-24

本文引用的文献

[1]
Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies.

Toxins (Basel). 2023-5-24

[2]
Methionine-isoleucine dichotomy at a key position in scorpion toxins inhibiting voltage-gated potassium channels.

Toxicon. 2023-8-1

[3]
Current Drug Development Overview: Targeting Voltage-Gated Calcium Channels for the Treatment of Pain.

Int J Mol Sci. 2023-5-25

[4]
Historical Perspective of the Characterization of Conotoxins Targeting Voltage-Gated Sodium Channels.

Mar Drugs. 2023-3-27

[5]
CSM-Toxin: A Web-Server for Predicting Protein Toxicity.

Pharmaceutics. 2023-1-28

[6]
AI4AVP: an antiviral peptides predictor in deep learning approach with generative adversarial network data augmentation.

Bioinform Adv. 2022-10-26

[7]
Improved Prediction Model of Protein and Peptide Toxicity by Integrating Channel Attention into a Convolutional Neural Network and Gated Recurrent Units.

ACS Omega. 2022-10-27

[8]
Formulation, characterization and cellular toxicity assessment of a novel bee-venom microsphere in prostate cancer treatment.

Sci Rep. 2022-8-2

[9]
Effector-GAN: prediction of fungal effector proteins based on pretrained deep representation learning methods and generative adversarial networks.

Bioinformatics. 2022-7-11

[10]
ToxinPred2: an improved method for predicting toxicity of proteins.

Brief Bioinform. 2022-9-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索