Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
Mol Oncol. 2022 Jan;16(2):485-507. doi: 10.1002/1878-0261.13123. Epub 2021 Nov 19.
Alteration in glycosylation pattern of MUC1 mucin tandem repeats during carcinomas has been shown to negatively affect adhesive properties of malignant cells and enhance tumor invasiveness and metastasis. In addition, MUC1 overexpression is closely interrelated with angiogenesis, making it a great target for immunotherapy. Alongside, easier interaction of nanobodies (single-domain antibodies) with their antigens, compared to conventional antibodies, is usually associated with superior desirable results. Herein, we evaluated the preclinical efficacy of a recombinant nanobody against MUC1 tandem repeats in suppressing tumor growth, angiogenesis, invasion, and metastasis. Expressed nanobody demonstrated specificity only toward MUC1-overexpressing cancer cells and could internalize in cancer cell lines. The IC50 values (the concentration at which the nanobody exerted half of its maximal inhibitory effect) of the anti-MUC1 nanobody against MUC1-positive human cancer cell lines ranged from 1.2 to 14.3 nm. Similar concentrations could also effectively induce apoptosis in MUC1-positive cancer cells but not in normal cells or MUC1-negative human cancer cells. Immunohistochemical staining of spontaneously developed mouse breast tumors prior to in vivo studies confirmed cross-reactivity of nanobody with mouse MUC1 despite large structural dissimilarities between mouse and human MUC1 tandem repeats. In vivo, a dose of 3 µg nanobody per gram of body weight in tumor-bearing mice could attenuate tumor progression and suppress excessive circulating levels of IL-1a, IL-2, IL-10, IL-12, and IL-17A pro-inflammatory cytokines. Also, a significant decline in expression of Ki-67, MMP9, and VEGFR2 biomarkers, as well as vasculogenesis, was evident in immunohistochemically stained tumor sections of anti-MUC1 nanobody-treated mice. In conclusion, the anti-MUC1 tandem repeat nanobody of the present study could effectively overcome tumor growth, invasion, and metastasis.
在癌症中,MUC1 粘蛋白串联重复序列的糖基化模式的改变已被证明会降低恶性细胞的粘附特性,并增强肿瘤的侵袭性和转移能力。此外,MUC1 的过度表达与血管生成密切相关,使其成为免疫治疗的一个很好的靶点。同时,与传统抗体相比,纳米抗体(单域抗体)与抗原更容易相互作用,通常与更好的理想结果相关。在此,我们评估了针对 MUC1 串联重复序列的重组纳米抗体在抑制肿瘤生长、血管生成、侵袭和转移方面的临床前疗效。表达的纳米抗体仅对过度表达 MUC1 的癌细胞具有特异性,并且可以在癌细胞系中内化。抗 MUC1 纳米抗体对 MUC1 阳性人癌细胞系的 IC50 值(纳米抗体发挥最大抑制作用的一半时的浓度)范围为 1.2 至 14.3nm。类似的浓度也能有效地诱导 MUC1 阳性癌细胞凋亡,但不能诱导正常细胞或 MUC1 阴性人癌细胞凋亡。在体内研究之前,对自发形成的小鼠乳腺癌肿瘤进行免疫组织化学染色,证实了纳米抗体与小鼠 MUC1 的交叉反应性,尽管小鼠和人 MUC1 串联重复序列之间存在很大的结构差异。在体内,荷瘤小鼠每克体重 3μg 的纳米抗体剂量可减弱肿瘤进展,并抑制过度循环的 IL-1a、IL-2、IL-10、IL-12 和 IL-17A 促炎细胞因子。此外,在抗 MUC1 纳米抗体治疗的小鼠肿瘤组织的免疫组化染色中,Ki-67、MMP9 和 VEGFR2 生物标志物的表达以及血管生成明显下降。总之,本研究的抗 MUC1 串联重复纳米抗体能有效克服肿瘤的生长、侵袭和转移。