Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab435.
We present a concatenated deep-learning multiple neural network system for the analysis of single-molecule trajectories. We apply this machine learning-based analysis to characterize the translational diffusion of the nicotinic acetylcholine receptor at the plasma membrane, experimentally interrogated using superresolution optical microscopy. The receptor protein displays a heterogeneous diffusion behavior that goes beyond the ensemble level, with individual trajectories exhibiting more than one diffusive state, requiring the optimization of the neural networks through a hyperparameter analysis for different numbers of steps and durations, especially for short trajectories (<50 steps) where the accuracy of the models is most sensitive to localization errors. We next use the statistical models to test for Brownian, continuous-time random walk and fractional Brownian motion, and introduce and implement an additional, two-state model combining Brownian walks and obstructed diffusion mechanisms, enabling us to partition the two-state trajectories into segments, each of which is independently subjected to multiple analysis. The concatenated multi-network system evaluates and selects those physical models that most accurately describe the receptor's translational diffusion. We show that the two-state Brownian-obstructed diffusion model can account for the experimentally observed anomalous diffusion (mostly subdiffusive) of the population and the heterogeneous single-molecule behavior, accurately describing the majority (72.5 to 88.7% for α-bungarotoxin-labeled receptor and between 73.5 and 90.3% for antibody-labeled molecules) of the experimentally observed trajectories, with only ~15% of the trajectories fitting to the fractional Brownian motion model.
我们提出了一种串联的深度学习多神经网络系统,用于分析单分子轨迹。我们将这种基于机器学习的分析方法应用于描述烟碱型乙酰胆碱受体在质膜上的平移扩散,这是通过超分辨率光学显微镜实验来研究的。受体蛋白表现出一种不均匀的扩散行为,超出了整体水平,个体轨迹表现出不止一种扩散状态,需要通过超参数分析来优化神经网络,以适应不同的步数和持续时间,特别是对于短轨迹(<50 步),模型的准确性对定位误差最为敏感。接下来,我们使用统计模型来检验布朗运动、连续时间随机漫步和分数布朗运动,并引入和实现了一个额外的两态模型,将布朗运动和受阻扩散机制结合起来,使我们能够将双态轨迹分成片段,每个片段都可以独立地进行多次分析。串联的多网络系统评估并选择那些最能准确描述受体平移扩散的物理模型。我们表明,两态布朗-受阻扩散模型可以解释实验观察到的群体的异常扩散(主要是亚扩散)和不均匀的单分子行为,准确描述了大多数(α-银环蛇毒素标记的受体为 72.5%至 88.7%,抗体标记的分子为 73.5%至 90.3%)实验观察到的轨迹,只有约 15%的轨迹符合分数布朗运动模型。