Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, Maryland, USA.
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, Baltimore, Maryland, USA.
Thorax. 2022 Aug;77(8):812-820. doi: 10.1136/thoraxjnl-2020-215185. Epub 2021 Oct 25.
Inhaled gene therapy of muco-obstructive lung diseases requires a strategy to achieve therapeutically relevant gene transfer to airway epithelium covered by particularly dehydrated and condensed mucus gel layer. Here, we introduce a synthetic DNA-loaded mucus-penetrating particle (DNA-MPP) capable of providing safe, widespread and robust transgene expression in in vivo and in vitro models of muco-obstructive lung diseases.
We investigated the ability of DNA-MPP to mediate reporter and/or therapeutic transgene expression in lung airways of a transgenic mouse model of muco-obstructive lung diseases (ie, -Tg) and in air-liquid interface cultures of primary human bronchial epithelial cells harvested from an individual with cystic fibrosis. A plasmid designed to silence epithelial sodium channel (ENaC) hyperactivity, which causes airway surface dehydration and mucus stasis, was intratracheally administered via DNA-MPP to evaluate therapeutic effects in vivo with or without pretreatment with hypertonic saline, a clinically used mucus-rehydrating agent.
DNA-MPP exhibited marked greater reporter transgene expression compared with a mucus-impermeable formulation in in vivo and in vitro models of muco-obstructive lung diseases. DNA-MPP carrying ENaC-silencing plasmids provided efficient downregulation of ENaC and reduction of mucus burden in the lungs of -Tg mice, and synergistic impacts on both gene transfer efficacy and therapeutic effects were achieved when DNA-MPP was adjuvanted with hypertonic saline.
DNA-MPP constitutes one of the rare gene delivery systems providing therapeutically meaningful gene transfer efficacy in highly relevant in vivo and in vitro models of muco-obstructive lung diseases due to its unique ability to efficiently penetrate airway mucus.
治疗黏液阻塞性肺部疾病的吸入基因疗法需要一种策略,以实现对气道上皮的治疗相关基因转移,而气道上皮被特别干燥和浓缩的黏液凝胶层所覆盖。在这里,我们介绍了一种载有 DNA 的黏液穿透颗粒(DNA-MPP),它能够在黏液阻塞性肺部疾病的体内和体外模型中提供安全、广泛和强大的转基因表达。
我们研究了 DNA-MPP 介导报告基因和/或治疗性转基因在黏液阻塞性肺部疾病转基因小鼠模型(即-Tg)的肺气道中的表达能力,以及从囊性纤维化患者中分离的原代人支气管上皮细胞的气液界面培养物中的表达能力。设计了一种沉默上皮钠通道(ENaC)过度活跃的质粒,该通道导致气道表面脱水和黏液停滞,通过 DNA-MPP 经气管内给药,评估体内治疗效果,或与高渗盐水预处理联合使用,高渗盐水是一种临床使用的黏液再水化剂。
与黏液不可渗透的制剂相比,DNA-MPP 在黏液阻塞性肺部疾病的体内和体外模型中显示出明显更高的报告基因表达。携带 ENaC 沉默质粒的 DNA-MPP 可有效下调 ENaC 并减少-Tg 小鼠肺部的黏液负担,当 DNA-MPP 与高渗盐水联合使用时,对基因转移效率和治疗效果均具有协同作用。
DNA-MPP 是为数罕见的基因传递系统之一,由于其能够有效地穿透气道黏液,因此在黏液阻塞性肺部疾病的高度相关的体内和体外模型中提供了有意义的治疗效果。