Zhang Fan, Zeng Qi-Yu, Xu Hao, Xu Ai-Ning, Liu Dian-Jia, Li Ning-Zhe, Chen Yi, Jin Yi, Xu Chun-Hui, Feng Chang-Zhou, Zhang Yuan-Liang, Liu Dan, Liu Na, Xie Yin-Yin, Yu Shan-He, Yuan Hao, Xue Kai, Shi Jing-Yi, Liu Ting Xi, Xu Peng-Fei, Zhao Wei-Li, Zhou Yi, Wang Lan, Huang Qiu-Hua, Chen Zhu, Chen Sai-Juan, Zhou Xiao-Long, Sun Xiao-Jian
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
Cell Discov. 2021 Oct 26;7(1):98. doi: 10.1038/s41421-021-00332-8.
The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the tars-mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the tars-mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNA, which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for tars-deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.
氨基酸应答(AAR)途径和未折叠蛋白应答(UPR)途径都汇聚于真核生物翻译起始因子2α(eIF2α)的磷酸化,在不同应激条件下,分别由通用控制非抑制性2(Gcn2)和蛋白激酶RNA样内质网激酶(Perk)催化。这种紧密的相互联系使得难以明确AAR和UPR的不同功能。在此,我们构建了一种斑马鱼模型,其中苏氨酰-tRNA合成酶(Tars)缺失会诱导依赖于Tars氨酰化活性的血管生成。对有/无Gcn2或Perk抑制的tars突变体和野生型胚胎进行比较转录组分析发现,只有Gcn2介导的AAR在tars突变体中被激活,而Perk主要在正常发育中起作用。机制分析表明,虽然正常情况下相当数量的eIF2α由Perk磷酸化,但Tars的缺失会导致无电荷tRNA的积累,进而激活Gcn2,导致额外数量的eIF2α磷酸化。eIF2α激酶的部分转换在很大程度上压倒了Perk在正常发育中的功能。有趣的是,尽管在这种应激条件下抑制Gcn2和Perk都能降低eIF2α的磷酸化水平,但它们在调控靶基因和挽救血管生成表型方面的功能后果却大不相同。确实,对这些途径的基因和药理学操作证实,tars缺陷诱导的血管生成需要Gcn2介导的AAR,而不是Perk介导的UPR。因此,相互关联的AAR和UPR途径通过选择性功能和相互竞争来差异调节血管生成,反映了多种应激反应途径整体进化以使生物体能够精确感知/应对各种类型应激的特异性和效率。