Suppr超能文献

基于改进的低秩模型的并行多层脑部 MRI T1 图谱成像

Simultaneous Multislice Brain MRI T1 Mapping with Improved Low-Rank Modeling.

机构信息

Siemens Healthineers Korea Ltd., Seoul 03737, Korea.

Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea.

出版信息

Tomography. 2021 Oct 7;7(4):545-554. doi: 10.3390/tomography7040047.

Abstract

To accelerate data acquisition speed in magnetic resonance imaging (MRI), multiple slices are simultaneously acquired using multiband pulses. Simultaneous multislice (SMS) imaging typically unfolds slice aliasing from the acquired collapsed slices. In this study, we extended the SMS framework to accelerated MR parameter quantification such as T1 mapping. Assuming that the slice-specific null space and signal subspace are invariant along the parameter dimension, we formulated the SMS framework as a constrained optimization problem under a joint reconstruction framework such that the noise and signal subspaces are used for slice separation and recovery, respectively. The proposed method was validated on 3T MR human brain scans. We successfully demonstrated that the proposed method outperforms competing methods in suppressing aliasing artifacts and noise at high SMS accelerations, thus leading to accurate T1 maps.

摘要

为了在磁共振成像 (MRI) 中加速数据采集速度,使用多频带脉冲同时采集多个切片。同时多切片 (SMS) 成像通常从采集的折叠切片中展开切片混叠。在这项研究中,我们将 SMS 框架扩展到了加速磁共振参数定量,如 T1 映射。假设切片特定的零空间和信号子空间在参数维度上是不变的,我们将 SMS 框架表述为联合重建框架下的约束优化问题,使得噪声和信号子空间分别用于切片分离和恢复。在 3T 磁共振人脑扫描上对所提出的方法进行了验证。我们成功地证明了该方法在高 SMS 加速下能够更好地抑制混叠伪影和噪声,从而得到准确的 T1 图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5025/8544713/d04417765578/tomography-07-00047-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验