Suppr超能文献

配体识别诱导增强 Cu(O) 配合物的氧化氢原子转移反应活性,由形成具有强 O-H 键的 Cu(OOH) 化合物驱动。

Ligand Identity-Induced Generation of Enhanced Oxidative Hydrogen Atom Transfer Reactivity for a Cu(O) Complex Driven by Formation of a Cu(OOH) Compound with a Strong O-H Bond.

机构信息

Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States.

Department of Chemistry , Stanford University , Stanford , California 94305 , United States.

出版信息

J Am Chem Soc. 2019 Aug 14;141(32):12682-12696. doi: 10.1021/jacs.9b05277. Epub 2019 Jul 30.

Abstract

A superoxide-bridged dicopper(II) complex, [Cu(XYLO)(O)] () (XYLO = binucleating -xylyl derivative with a bridging phenolate ligand donor and two bis(2-{2-pyridyl}ethyl)amine arms), was generated from chemical oxidation of the peroxide-bridged dicopper(II) complex [Cu(XYLO)(O)] (), using ferrocenium (Fc) derivatives, in 2-methyltetrahydrofuran (MeTHF) at -125 °C. Using MeFc, a ⇆ equilibrium was established, allowing for calculation of the reduction potential of as -0.525 ± 0.01 V vs Fc. Addition of 1 equiv of strong acid to afforded the hydroperoxide-bridged dicopper(II) species [Cu(XYLO)(OOH)] (). An acid-base equilibrium between and was achieved through spectral titrations using a derivatized phosphazene base. The p of was thus determined to be 24 ± 0.6 in MeTHF at -125 °C. Using a thermodynamic square scheme and the Bordwell relationship, the hydroperoxo complex () O-H bond dissociation free energy (BDFE) was calculated as 81.8 ± 1.5 (BDE = 86.8) kcal/mol. The observed oxidizing capability of [Cu(XYLO)(O)] (), as demonstrated in H atom abstraction reactions with certain phenolic ArO-H and hydrocarbon C-H substrates, provides direct support for this experimentally determined O-H BDFE. A kinetic study reveals a very fast reaction of TEMPO-H with in MeTHF, with (-100 °C) = 5.6 M s. Density functional theory (DFT) calculations reveal how the structure of may minimize stabilization of the superoxide moiety, resulting in its enhanced reactivity. The thermodynamic insights obtained herein highlight the importance of the interplay between ligand design and the generation and properties of copper (or other metal ion) bound O-derived reduced species, such as p, reduction potential, and BDFE; these may be relevant to the capabilities (i.e., oxidizing power) of reactive oxygen intermediates in metalloenzyme chemical system mediated oxidative processes.

摘要

一种超氧桥联双核铜(II)配合物,Cu(XYLO)(O)(XYLO 是一种双核 - 二甲苯衍生物,具有桥连的酚氧配体供体和两个双(2-{2-吡啶基}乙基)胺臂),是通过使用 ferrocenium(Fc)衍生物在-125°C 下化学氧化过氧桥联双核铜(II)配合物Cu(XYLO)(O)在 2-甲基四氢呋喃(MeTHF)中生成的。使用 MeFc 建立了 ⇆ 平衡,允许计算出作为 -0.525 ± 0.01 V vs Fc 的还原电位。向 中加入 1 当量强酸,得到过氧桥联双核铜(II)物种Cu(XYLO)(OOH)。通过使用衍生化的磷杂环戊二烯碱进行光谱滴定,实现了 与 的酸碱平衡。因此,在-125°C 的 MeTHF 中,确定 的 p 为 24 ± 0.6。使用热力学正方形方案和 Bordwell 关系,计算得到过氧氢复合物() O-H 键离解自由能(BDFE)为 81.8 ± 1.5(BDE = 86.8)kcal/mol。Cu(XYLO)(O)的观察到的氧化能力,如在某些酚类 ArO-H 和烃类 C-H 底物的 H 原子提取反应中所示,直接支持了这种实验确定的 O-H BDFE。动力学研究表明 TEMPO-H 在 MeTHF 中与 快速反应,k (-100°C) = 5.6 M s。密度泛函理论(DFT)计算揭示了 结构如何最小化超氧部分的稳定化,从而导致其增强的反应性。本文获得的热力学见解强调了配体设计与铜(或其他金属离子)结合的 O 衍生还原物种的生成和性质(如 p、还原电位和 BDFE)之间相互作用的重要性;这些可能与金属酶化学系统中介导氧化过程中的活性氧中间体的能力(即氧化能力)相关。

相似文献

2
Heme-Fe Superoxide, Peroxide and Hydroperoxide Thermodynamic Relationships: Fe-O Complex H-Atom Abstraction Reactivity.
J Am Chem Soc. 2020 Feb 12;142(6):3104-3116. doi: 10.1021/jacs.9b12571. Epub 2020 Jan 28.
3
Peroxo and Superoxo Moieties Bound to Copper Ion: Electron-Transfer Equilibrium with a Small Reorganization Energy.
J Am Chem Soc. 2016 Jun 8;138(22):7055-66. doi: 10.1021/jacs.6b02404. Epub 2016 May 26.
8
9
A Thioether-Ligated Cupric Superoxide Model with Hydrogen Atom Abstraction Reactivity.
J Am Chem Soc. 2021 Mar 17;143(10):3707-3713. doi: 10.1021/jacs.1c00260. Epub 2021 Mar 8.
10
[CuO](+) and [CuOH](2+) complexes: intermediates in oxidation catalysis?
Acc Chem Res. 2015 Jul 21;48(7):2126-31. doi: 10.1021/acs.accounts.5b00169. Epub 2015 Jun 15.

引用本文的文献

1
Synthetic Copper-(Di)oxygen Complex Generation and Reactivity Relevant to Copper Protein O-Processing.
Bull Jpn Soc Coord Chem. 2024;83:16-27. doi: 10.4019/bjscc.83.16. Epub 2024 Jun 20.
2
Dioxygenase Chemistry in Nucleophilic Aldehyde Deformylations Utilizing Dicopper O-Derived Peroxide Complexes.
J Am Chem Soc. 2024 Aug 28;146(34):23854-23871. doi: 10.1021/jacs.4c06243. Epub 2024 Aug 14.
3
Cooperative Sulfur Transformations at a Dinickel Site: A Metal Bridging Sulfur Radical and Its H-Atom Abstraction Thermochemistry.
J Am Chem Soc. 2024 Aug 21;146(33):23158-23170. doi: 10.1021/jacs.4c05113. Epub 2024 Aug 7.
4
Copper-oxygen adducts: new trends in characterization and properties towards C-H activation.
Chem Sci. 2024 May 13;15(27):10308-10349. doi: 10.1039/d4sc01762e. eCollection 2024 Jul 10.
6
The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent.
Biophys J. 2024 May 7;123(9):1139-1151. doi: 10.1016/j.bpj.2024.04.002. Epub 2024 Apr 2.
7
Oxygen versus Sulfur Coordination in Cobalt Superoxo Complexes: Spectroscopic Properties, O Binding, and H-Atom Abstraction Reactivity.
Inorg Chem. 2023 Jan 9;62(1):392-400. doi: 10.1021/acs.inorgchem.2c03484. Epub 2022 Dec 20.
8
Capture of activated dioxygen intermediates at the copper-active site of a lytic polysaccharide monooxygenase.
Chem Sci. 2022 Nov 2;13(45):13303-13320. doi: 10.1039/d2sc05031e. eCollection 2022 Nov 23.
9
Hydrogen Atom Transfer Thermodynamics of Homologous Co(III)- and Mn(III)-Superoxo Complexes: The Effect of the Metal Spin State.
JACS Au. 2022 Aug 11;2(8):1899-1909. doi: 10.1021/jacsau.2c00268. eCollection 2022 Aug 22.

本文引用的文献

1
Mechanistic Dichotomy in Proton-Coupled Electron-Transfer Reactions of Phenols with a Copper Superoxide Complex.
J Am Chem Soc. 2019 Apr 3;141(13):5470-5480. doi: 10.1021/jacs.9b00466. Epub 2019 Mar 25.
3
Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function.
Chem Rev. 2018 Nov 28;118(22):10840-11022. doi: 10.1021/acs.chemrev.8b00074. Epub 2018 Oct 29.
6
Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts.
Chem Rev. 2018 Mar 14;118(5):2340-2391. doi: 10.1021/acs.chemrev.7b00542. Epub 2018 Feb 6.
7
Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction.
Chem Rev. 2018 Mar 14;118(5):2302-2312. doi: 10.1021/acs.chemrev.7b00488. Epub 2018 Feb 6.
8
Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous Systems.
Chem Rev. 2018 Mar 14;118(5):2313-2339. doi: 10.1021/acs.chemrev.7b00335. Epub 2018 Jan 31.
9
Oxygen Activation and Energy Conservation by Cytochrome c Oxidase.
Chem Rev. 2018 Mar 14;118(5):2469-2490. doi: 10.1021/acs.chemrev.7b00664. Epub 2018 Jan 19.
10
Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins.
Chem Rev. 2018 Mar 14;118(5):2491-2553. doi: 10.1021/acs.chemrev.7b00373. Epub 2017 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验