Suppr超能文献

利用加利福尼亚水禽追踪器评估加利福尼亚中央谷商业家禽与水禽的接近程度。

Using the California Waterfowl Tracker to Assess Proximity of Waterfowl to Commercial Poultry in the Central Valley of California.

机构信息

Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616.

Hopland Research and Extension Center, UC-Agriculture and Natural Resources, Hopland, CA 95449.

出版信息

Avian Dis. 2021 Sep;65(3):483-492. doi: 10.1637/aviandiseases-D-20-00137.

Abstract

Migratory waterfowl are the primary reservoir of avian influenza viruses (AIV), which can be spread to commercial poultry. Surveillance efforts that track the location and abundance of wild waterfowl and link those data to inform assessments of risk and sampling for AIV currently do not exist. To assist surveillance and minimize poultry exposure to AIV, here we explored the utility of Remotely Sensed Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery in combination with land-based climate measurements (e.g., temperature and precipitation) to predict waterfowl location and abundance in near real-time in the California Central Valley (CCV), where both wild waterfowl and domestic poultry are densely located. Specifically, remotely collected MODIS and climate data were integrated into a previously developed boosted regression tree (BRT) model to predict and visualize waterfowl distributions across the CCV. Daily model-based predictions are publicly available during the winter as part of the dynamic California Waterfowl Tracker (CWT) web app hosted on the University of California's Cooperative Extension webpage. In this study, we analyzed 52 days of model predictions and produced daily spatiotemporal maps of waterfowl concentrations near the 605 commercial poultry farms in the CCV during January and February of 2019. Exposure of each poultry farm to waterfowl during each day was classified as high, medium, low, or none, depending on the density of waterfowl within 4 km of a farm. Results indicated that farms were at substantially greater risk of exposure in January, when CCV waterfowl populations peak, than in February. For example, during January, 33% (199/605) of the farms were exposed for ≥1 day to high waterfowl density . 19% (115/605) of the farms in February. In addition to demonstrating the overall variability of waterfowl location and density, these data demonstrate how remote sensing can be used to better triage AIV surveillance and biosecurity efforts via the utilization of a functional web app-based tool. The ability to leverage remote sensing is an integral advancement toward improving AIV surveillance in waterfowl in close proximity to commercial poultry. Expansion of these types of remote sensing methods, linked to a user-friendly web tool, could be further developed across the continental United States. The BRT model incorporated into the CWT reflects a first attempt to give an accurate representation of waterfowl distribution and density relative to commercial poultry.

摘要

候鸟是禽流感病毒 (AIV) 的主要宿主,这些病毒可传播到商业家禽。目前,还没有跟踪野生水禽位置和数量并将这些数据联系起来以评估风险和采样 AIV 的监测工作。为了协助监测并最大程度地减少家禽接触 AIV 的风险,我们在这里探索了使用遥感中分辨率成像光谱仪 (MODIS) 卫星图像与基于陆地的气候测量(例如温度和降水)相结合,实时预测加利福尼亚中央山谷 (CCV) 水禽位置和数量的效用,CCV 既有野生水禽又有密集的家禽。具体来说,从远程收集的 MODIS 和气候数据被整合到之前开发的增强回归树 (BRT) 模型中,以预测和可视化 CCV 内的水禽分布。作为加利福尼亚水禽追踪器 (CWT) 动态网络应用程序的一部分,在冬季,每天基于模型的预测结果都可公开获取,该应用程序由加利福尼亚大学合作推广网页托管。在这项研究中,我们分析了 2019 年 1 月和 2 月的 52 天模型预测结果,并生成了 CCV 内 605 个商业家禽养殖场附近水禽浓度的每日时空地图。根据农场 4 公里范围内水禽的密度,将每个家禽农场每天接触水禽的情况分为高、中、低或无。结果表明,在 CCV 水禽数量达到峰值的 1 月,农场面临的暴露风险大大高于 2 月。例如,在 1 月,33%(199/605)的农场至少有 1 天暴露于高密度水禽中。2 月,19%(115/605)的农场。这些数据不仅表明了水禽位置和密度的总体变化,还表明了如何通过使用基于功能网络应用程序的工具,利用遥感更好地进行 AIV 监测和生物安全工作。利用遥感的能力是改善商业家禽附近水禽 AIV 监测的重要进步。在美国大陆,这种类型的遥感方法的扩展与用户友好的网络工具相结合,可以进一步开发。整合到 CWT 中的 BRT 模型反映了首次尝试准确表示相对于商业家禽的水禽分布和密度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验