Suppr超能文献

学习选择性互注意力和对比用于 RGB-D 显著检测。

Learning Selective Mutual Attention and Contrast for RGB-D Saliency Detection.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9026-9042. doi: 10.1109/TPAMI.2021.3122139. Epub 2022 Nov 7.

Abstract

How to effectively fuse cross-modal information is a key problem for RGB-D salient object detection. Early fusion and result fusion schemes fuse RGB and depth information at the input and output stages, respectively, and hence incur distribution gaps or information loss. Many models instead employ a feature fusion strategy, but they are limited by their use of low-order point-to-point fusion methods. In this paper, we propose a novel mutual attention model by fusing attention and context from different modalities. We use the non-local attention of one modality to propagate long-range contextual dependencies for the other, thus leveraging complementary attention cues to achieve high-order and trilinear cross-modal interaction. We also propose to induce contrast inference from the mutual attention and obtain a unified model. Considering that low-quality depth data may be detrimental to model performance, we further propose a selective attention to reweight the added depth cues. We embed the proposed modules in a two-stream CNN for RGB-D SOD. Experimental results demonstrate the effectiveness of our proposed model. Moreover, we also construct a new and challenging large-scale RGB-D SOD dataset of high-quality, which can promote both the training and evaluation of deep models.

摘要

如何有效地融合跨模态信息是 RGB-D 显著目标检测的一个关键问题。早期融合和结果融合方案分别在输入和输出阶段融合 RGB 和深度信息,因此会产生分布差距或信息丢失。许多模型则采用特征融合策略,但它们受到低阶点对点融合方法的限制。在本文中,我们提出了一种新的互注意力模型,通过融合来自不同模态的注意力和上下文。我们使用一种模态的非局部注意力来传播另一种模态的远距离上下文依赖关系,从而利用互补的注意力线索来实现高阶和三次交叉模态交互。我们还提出从互注意力中诱导对比推理,以获得统一的模型。考虑到低质量的深度数据可能对模型性能有害,我们进一步提出了一种选择性注意力来重新加权添加的深度线索。我们将提出的模块嵌入到用于 RGB-D SOD 的双流 CNN 中。实验结果证明了我们提出的模型的有效性。此外,我们还构建了一个新的具有挑战性的高质量 RGB-D SOD 数据集,这可以促进深度模型的训练和评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验