Suppr超能文献

LRNet:用于光场显著目标检测的轻量级注意力导向残差融合网络

LRNet: lightweight attention-oriented residual fusion network for light field salient object detection.

作者信息

Ma Shuai, Zhu Xusheng, Xu Long, Zhou Li, Chen Daixin

机构信息

ChengDu Aircraft Industrial (Group) Co., Ltd., Qingyang, Chengdu, 610092, Sichuan, China.

出版信息

Sci Rep. 2024 Oct 29;14(1):26030. doi: 10.1038/s41598-024-76874-0.

Abstract

Light field imaging contains abundant scene structure information, which can improve the accuracy of salient object detection in challenging tasks and has received widespread attention. However, how to apply the abundant information of light field imaging to salient object detection still faces enormous challenges. In this paper, the lightweight attention and residual convLSTM network is proposed to address this issue, which is mainly composed of the lightweight attention-based feature enhancement module (LFM) and residual convLSTM-based feature integration module (RFM). The LFM can provide an attention map for each focal slice through the attention mechanism to focus on the features related to the object, thereby enhancing saliency features. The RFM leverages the residual mechanism and convLSTM to fully utilize the spatial structural information of focal slices, thereby achieving high-precision feature fusion. Experimental results on three publicly available light field datasets show that the proposed method surpasses the existing 17 state-of-the-art methods and achieves the highest score among five quantitative indicators.

摘要

光场成像包含丰富的场景结构信息,这可以提高在具有挑战性的任务中显著目标检测的准确性,并受到了广泛关注。然而,如何将光场成像的丰富信息应用于显著目标检测仍然面临巨大挑战。本文提出了轻量级注意力和残差卷积长短时记忆网络来解决这一问题,该网络主要由基于轻量级注意力的特征增强模块(LFM)和基于残差卷积长短时记忆的特征集成模块(RFM)组成。LFM可以通过注意力机制为每个焦平面提供一个注意力图,以聚焦于与目标相关的特征,从而增强显著特征。RFM利用残差机制和卷积长短时记忆来充分利用焦平面的空间结构信息,从而实现高精度的特征融合。在三个公开可用的光场数据集上的实验结果表明,所提出的方法超越了现有的17种先进方法,并在五个定量指标中取得了最高分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d02/11522285/5989f665c455/41598_2024_76874_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验