Pan Jun, Zhang Yuchen, Wang Jian, Bai Zhongchao, Cao Ruiguo, Wang Nana, Dou Shixue, Huang Fuqiang
State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, P. R. China.
Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.
Adv Mater. 2022 Mar;34(10):e2107183. doi: 10.1002/adma.202107183. Epub 2022 Jan 30.
Increasing the energy density and long-term cycling stability of lithium-ion batteries necessitates the stability of electrolytes under high/low voltage application and stable electrode/electrolyte interfacial contact. However, neither a single polymer nor liquid electrolyte can realize this due to their limited internal energy gap, which cannot avoid lithium-metal deposition and electrolyte oxidation simultaneously. Herein, a novel type of quasi-double-layer composite polymer electrolytes (QDL-CPEs) is proposed by using plasticizers with high oxidation stability (propylene carbonate) and high reduction stability (diethylene glycol dimethyl ether) in a poly(vinylidene fluoride) (PVDF)-based electrolyte composites. In-situ-polymerized propylene carbonate can function as a cathode electrolyte interface (CEI) film, which can enhance the antioxidant ability. The nucleophilic substitution reaction between diethylene glycol dimethyl ether and PVDF increases the reduction stability of the electrolyte on the anodic side, without the formation of lithium dendrites. The QDL-CPEs has high ionic conductivity, an enhanced electrochemical reaction window, adjustable electrode/electrolyte interphases, and no additional electrolyte-electrolyte interfacial resistance. Thus, this ingenious design of the QDL-CPEs improves the cycling performance of a fabricated LiNi Co Mn O (NCM811)//QDL-CPEs//hard carbon full cell at room temperature, paving a new way for designing solid-state battery systems accessible for practical applications.
提高锂离子电池的能量密度和长期循环稳定性需要电解质在高/低电压应用下的稳定性以及稳定的电极/电解质界面接触。然而,由于单一聚合物电解质和液体电解质的内能隙有限,无法同时避免锂金属沉积和电解质氧化,因此都无法实现这一点。在此,通过在聚偏氟乙烯(PVDF)基电解质复合材料中使用具有高氧化稳定性(碳酸丙烯酯)和高还原稳定性(二甘醇二甲醚)的增塑剂,提出了一种新型的准双层复合聚合物电解质(QDL-CPEs)。原位聚合的碳酸丙烯酯可以作为阴极电解质界面(CEI)膜,增强抗氧化能力。二甘醇二甲醚与PVDF之间的亲核取代反应提高了电解质在阳极侧的还原稳定性,且不会形成锂枝晶。QDL-CPEs具有高离子电导率、增强的电化学反应窗口、可调节的电极/电解质界面,且没有额外的电解质-电解质界面电阻。因此,QDL-CPEs的这种巧妙设计提高了室温下制备的LiNiCoMnO(NCM811)//QDL-CPEs//硬碳全电池的循环性能,为设计适用于实际应用的固态电池系统开辟了一条新途径。