Xu Fanglin, Deng Shungui, Guo Qingya, Zhou Dong, Yao Xiayin
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Small Methods. 2021 Jul;5(7):e2100262. doi: 10.1002/smtd.202100262. Epub 2021 May 21.
Poly(vinylidene fluoride)-based polymer electrolytes are being intensely investigated for solid-state lithium metal batteries. However, phase separation and porous structures are still pronounced issues in traditional preparing procedure. Herein, a bottom-to-up strategy is employed to design single-phase and densified polymer electrolytes via incorporating quasi-ionic liquid with poly(vinylidene fluoride-co-hexafluoropropylene). Due to strong ion/dipole-dipole interaction, the optimized polymer electrolyte delivers high room-temperature ionic conductivity of 1.55 × 10 S cm , superior thermal and oxidation stability of 4.97 V, excellent stretchability of over 1500% and toughness of 43 MJ cm as well as desirable self-extinguishing ability. Furthermore, the superb compatibility toward Li anode enables over 3000 h cycling of Li plating/stripping and ≈98% Coulombic efficiency in Li||Cu test at 0.1 mA cm . In particular, lithium metal battery Li||LiNi Co Mn O exhibits a room-temperature discharge retention rate of 96% after 500 cycles under a rate of 0.1 C, which is associated with the rigid-flexible coupling electrodes/electrolytes interphase. This investigation demonstrates the potential application of quasi-ionic liquid/polymer electrolytes in safe lithium metal batteries.
基于聚偏氟乙烯的聚合物电解质正被深入研究用于固态锂金属电池。然而,在传统制备过程中,相分离和多孔结构仍然是突出问题。在此,采用一种自下而上的策略,通过将准离子液体与聚(偏氟乙烯 - 共 - 六氟丙烯)结合来设计单相且致密的聚合物电解质。由于强烈的离子/偶极 - 偶极相互作用,优化后的聚合物电解质具有1.55×10 S cm 的高室温离子电导率、4.97 V的优异热稳定性和氧化稳定性、超过1500%的出色拉伸性以及43 MJ cm 的韧性,还有理想的自熄能力。此外,对锂阳极的出色兼容性使得在0.1 mA cm 的Li||Cu测试中锂电镀/剥离循环超过3000小时且库仑效率约为98%。特别是,锂金属电池Li||LiNi Co Mn O在0.1 C的倍率下500次循环后室温放电保持率为96%,这与刚柔耦合的电极/电解质界面有关。这项研究证明了准离子液体/聚合物电解质在安全锂金属电池中的潜在应用。