Suppr超能文献

通过波动的触须创造水下视觉:海豹触须的流感机制和仿生潜力综述。

Creating underwater vision through wavy whiskers: a review of the flow-sensing mechanisms and biomimetic potential of seal whiskers.

机构信息

Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.

MIT Sea Grant College Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

J R Soc Interface. 2021 Oct;18(183):20210629. doi: 10.1098/rsif.2021.0629. Epub 2021 Oct 27.

Abstract

Seals are known to use their highly sensitive whiskers to precisely follow the hydrodynamic trail left behind by prey. Studies estimate that a seal can track a herring that is swimming as far as 180 m away, indicating an incredible detection apparatus on a par with the echolocation system of dolphins and porpoises. This remarkable sensing capability is enabled by the unique undulating structural morphology of the whisker that suppresses vortex-induced vibrations (VIVs) and thus increases the signal-to-noise ratio of the flow-sensing whiskers. In other words, the whiskers vibrate minimally owing to the seal's swimming motion, eliminating most of the self-induced noise and making them ultrasensitive to the vortices in the wake of escaping prey. Because of this impressive ability, the seal whisker has attracted much attention in the scientific community, encompassing multiple fields of sensory biology, fluid mechanics, biomimetic flow sensing and soft robotics. This article presents a comprehensive review of the seal whisker literature, covering the behavioural experiments on real seals, VIV suppression capabilities enabled by the undulating geometry, wake vortex-sensing mechanisms, morphology and material properties and finally engineering applications inspired by the shape and functionality of seal whiskers. Promising directions for future research are proposed.

摘要

海豹利用其高度敏感的胡须精确地追踪猎物留下的水动力轨迹。研究估计,海豹可以追踪在 180 米外游动的鲱鱼,这表明其探测装置令人难以置信,与海豚和鼠海豚的回声定位系统相当。这种非凡的感应能力得益于胡须独特的波浪状结构形态,它抑制了涡激振动(VIV),从而提高了流动感应胡须的信噪比。换句话说,由于海豹的游动运动,胡须的振动极小,消除了大部分自激噪声,使其对逃避猎物的尾流中的漩涡极为敏感。由于这种令人印象深刻的能力,海豹胡须在科学界引起了广泛关注,涵盖了感觉生物学、流体力学、仿生流动感应和软机器人等多个领域。本文对海豹胡须文献进行了全面回顾,涵盖了真实海豹的行为实验、波浪几何形状实现的 VIV 抑制能力、尾流涡旋感应机制、形态和材料特性,最后是受海豹胡须形状和功能启发的工程应用。提出了有前途的未来研究方向。

相似文献

9
Flow sensing by pinniped whiskers.鳍足类胡须的流量感应。
Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3077-84. doi: 10.1098/rstb.2011.0155.

引用本文的文献

5
Bioinspired robots can foster nature conservation.受生物启发的机器人可以促进自然保护。
Front Robot AI. 2023 Oct 18;10:1145798. doi: 10.3389/frobt.2023.1145798. eCollection 2023.
9
Whiskers as hydrodynamic prey sensors in foraging seals.胡须作为觅食海豹的水动力猎物传感器。
Proc Natl Acad Sci U S A. 2022 Jun 21;119(25):e2119502119. doi: 10.1073/pnas.2119502119. Epub 2022 Jun 13.

本文引用的文献

3
Ecomorphology reveals Euler spiral of mammalian whiskers.生态形态学揭示了哺乳动物胡须的欧拉螺旋线。
J Morphol. 2020 Oct;281(10):1271-1279. doi: 10.1002/jmor.21246. Epub 2020 Aug 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验