Suppr超能文献

中国欠发达地区可再生能源对碳排放的空间溢出效应。

Spatial Spillover Effects of Renewable Energy on Carbon Emissions in Less-developed Areas of China.

机构信息

School of Public Administration, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China.

Mineral Resources Strategy and Policy Research Center, China University of Geosciences, Lumo Road 388, Wuhan, 430074, China.

出版信息

Environ Sci Pollut Res Int. 2022 Mar;29(13):19019-19032. doi: 10.1007/s11356-021-17053-w. Epub 2021 Oct 27.

Abstract

The purpose of this paper is to determine the spatial spillover effects of renewable energy on carbon emissions in China's less-developed areas. However, few studies have considered this issue from the perspective of less-developed areas. Based on panel data of 21 provinces in China from 2000 to 2017, this paper analyzes the spatial spillover effects of renewable energy on carbon emissions using Moran's I and Spatial Durbin Model (SDM). The results suggest that, first, Moran's I ranges from 0.378 to 0.519, Moran scatter plot presents that provinces are located in the high-high (HH) and low-low (LL) quadrants, indicating provincial carbon emissions in the study area have a significant spatial correlation and agglomeration. Second, under the three matrices, the direct effect coefficients of renewable energy are -0.2522, -0.2639 and -0.2601, this shows that renewable energy is beneficial to local carbon emissions reduction. In contrast, the indirect effect coefficients of renewable energy are 0.0605, 0.1012 and 0.1125, which means higher renewable energy consumption in a single area is conducive to the improvement of carbon emissions to neighbouring areas. Third, urbanization, industrialization, physical capital and other variables have different impacts on local and nearby carbon emissions. This study provides empirical evidence to achieve carbon emission reduction targets by government policymakers.

摘要

本文旨在确定可再生能源对中国欠发达地区碳排放的空间溢出效应。然而,很少有研究从欠发达地区的角度考虑这个问题。基于 2000 年至 2017 年中国 21 个省份的面板数据,本文利用 Moran's I 和空间杜宾模型(SDM)分析了可再生能源对碳排放的空间溢出效应。结果表明:首先,Moran's I 值在 0.378 到 0.519 之间,Moran 散点图显示省份位于高-高(HH)和低-低(LL)象限,表明研究区域内的省份碳排放量具有显著的空间相关性和集聚性。其次,在三个矩阵下,可再生能源的直接效应系数分别为-0.2522、-0.2639 和-0.2601,这表明可再生能源有利于当地的碳减排。相比之下,可再生能源的间接效应系数分别为 0.0605、0.1012 和 0.1125,这意味着在单个地区较高的可再生能源消费有利于提高相邻地区的碳排放水平。第三,城市化、工业化、物质资本等变量对本地和附近地区的碳排放有不同的影响。本研究为政府决策者实现碳排放减排目标提供了经验证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验