IEEE Trans Image Process. 2021;30:9014-9029. doi: 10.1109/TIP.2021.3122092. Epub 2021 Nov 2.
This paper proposes a Fully Spiking Hybrid Neural Network (FSHNN) for energy-efficient and robust object detection in resource-constrained platforms. The network architecture is based on a Spiking Convolutional Neural Network using leaky-integrate-fire neuron models. The model combines unsupervised Spike Time-Dependent Plasticity (STDP) learning with back-propagation (STBP) learning methods and also uses Monte Carlo Dropout to get an estimate of the uncertainty error. FSHNN provides better accuracy compared to DNN based object detectors while being more energy-efficient. It also outperforms these object detectors, when subjected to noisy input data and less labeled training data with a lower uncertainty error.
本文提出了一种用于资源受限平台中节能、鲁棒目标检测的全尖峰混合神经网络(FSHNN)。该网络架构基于使用漏积分放电神经元模型的尖峰卷积神经网络。该模型结合了无监督尖峰时间依赖可塑性(STDP)学习和反向传播(STBP)学习方法,还使用蒙特卡罗随机失活来获得不确定性误差的估计。与基于 DNN 的目标检测器相比,FSHNN 在提供更高准确性的同时也更加节能。当输入数据存在噪声以及训练数据量较少和不确定性误差较小时,FSHNN 也优于这些目标检测器。