Suppr超能文献

- 一个用于科学文本分析的开源Python包。

-An open-source Python package for scientific text analysis.

作者信息

Shetty Sarthak J, Ramesh Vijay

机构信息

Center for Ecological Sciences Indian Institute of Science Bengaluru India.

Department of Ecology, Evolution and Environmental Biology Columbia University New York NY USA.

出版信息

Ecol Evol. 2021 Sep 17;11(20):13920-13929. doi: 10.1002/ece3.8098. eCollection 2021 Oct.

Abstract

With an increasing number of scientific articles published each year, there is a need to synthesize and obtain insights across ever-growing volumes of literature. Here, we present , a novel open-source automated content analysis package that can be used to analyze scientific abstracts within a natural language processing framework.The package collects abstracts from scientific repositories, identifies topics of research discussed in these abstracts, and presents interactive concept maps to visualize these research topics. To showcase the utilities of this package, we present two examples, specific to the field of ecology and conservation biology.First, we demonstrate the end-to-end functionality of the package by presenting topics of research discussed in 1,131 abstracts pertaining to birds of the Tropical Andes. Our results suggest that a large proportion of avian research in this biodiversity hotspot pertains to species distributions, climate change, and plant ecology.Second, we retrieved and analyzed 22,561 abstracts across eight journals in the field of conservation biology to identify twelve global topics of conservation research. Our analysis shows that conservation policy and landscape ecology are focal topics of research. We further examined how these conservation-associated research topics varied across five biodiversity hotspots.Lastly, we compared the utilities of this package with existing tools that carry out automated content analysis, and we show that our open-source package has wider functionality and provides end-to-end utilities that seldom exist across other tools.

摘要

随着每年发表的科学文章数量不断增加,有必要对数量不断增长的文献进行综合分析并获取见解。在此,我们展示了一个新颖的开源自动化内容分析软件包,它可用于在自然语言处理框架内分析科学摘要。该软件包从科学知识库中收集摘要,识别这些摘要中讨论的研究主题,并呈现交互式概念图以可视化这些研究主题。为了展示这个软件包的实用性,我们给出了两个特定于生态学和保护生物学领域的例子。首先,我们通过展示在1131篇与热带安第斯鸟类相关的摘要中讨论的研究主题,来演示该软件包的端到端功能。我们的结果表明,在这个生物多样性热点地区,很大一部分鸟类研究与物种分布、气候变化和植物生态学有关。其次,我们检索并分析了保护生物学领域八本期刊中的22561篇摘要,以确定保护研究的十二个全球主题。我们的分析表明,保护政策和景观生态学是研究的重点主题。我们进一步研究了这些与保护相关的研究主题在五个生物多样性热点地区是如何变化的。最后,我们将这个软件包的实用性与现有的进行自动化内容分析的工具进行了比较,结果表明我们的开源软件包具有更广泛的功能,并提供了其他工具很少具备的端到端实用功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc11/8525079/8f7ed68c660e/ECE3-11-13920-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验