Suppr超能文献

癌胚抗原、鳞状细胞癌相关抗原、CYFRA 21-1、神经元特异性烯醇化酶、组织多肽抗原和胃泌素释放肽前体联合检测对小细胞肺癌的鉴别诊断价值。

The diagnostic value of the combination of carcinoembryonic antigen, squamous cell carcinoma-related antigen, CYFRA 21-1, neuron-specific enolase, tissue polypeptide antigen, and progastrin-releasing peptide in small cell lung cancer discrimination.

机构信息

Department of Thoracic Surgery, 26447Peking University First Hospital, Beijing 100034, China.

出版信息

Int J Biol Markers. 2021 Dec;36(4):36-44. doi: 10.1177/17246008211049446. Epub 2021 Oct 28.

Abstract

BACKGROUND

The diagnostic value of six tumor markers was investigated and the appropriate combinations of those tumor markers to discriminate small cell lung cancer was explored.

METHODS

Patients suspected with lung cancer (1938) were retrospectively analyzed. Candidate tumor markers from carcinoembryonic antigen (CEA), squamous cell carcinoma-related antigen (SCC), cytokeratin 19 fragment 21-1 (CYFRA 21-1), neuron-specific enolase (NSE), tissue polypeptide antigen (TPA), and progastrin releasing peptide (ProGRP) were selected to construct a logistic regression model. The receiver operating characteristic curve was used for evaluating the diagnostic value of the tumor markers and the predictive model.

RESULTS

ProGRP had the highest positive rate (72.3%) in diagnosed small cell lung cancer, followed by neuron-specific enolase (68.3%), CYFRA21-1 (50.5%), carcinoembryonic antigen (45.5%), tissue polypeptide antigen (30.7%), and squamous cell carcinoma-related antigen (5.9%). The predictive model for small cell lung cancer discrimination was established, which yielded the highest area under the curve (0.888; 95% confidence interval: 0.846-0.929), with a sensitivity of 71.3%, a specificity of 95.0%, a positive predictive value of 49.0%, and a negative predictive value of 98.0%.

CONCLUSIONS

Combining tumor markers can improve the efficacy for small cell lung cancer discrimination. A predictive model has been established in small cell lung cancer differential diagnosis with preferable efficacy.

摘要

背景

研究了六种肿瘤标志物的诊断价值,并探讨了这些肿瘤标志物的适当组合来区分小细胞肺癌。

方法

回顾性分析了 1938 例疑似肺癌患者。从癌胚抗原(CEA)、鳞状细胞癌相关抗原(SCC)、细胞角蛋白 19 片段 21-1(CYFRA 21-1)、神经元特异性烯醇化酶(NSE)、组织多肽抗原(TPA)和胃泌素释放肽前体(ProGRP)中选择候选肿瘤标志物,构建逻辑回归模型。使用受试者工作特征曲线评估肿瘤标志物和预测模型的诊断价值。

结果

ProGRP 在诊断小细胞肺癌中的阳性率最高(72.3%),其次是神经元特异性烯醇化酶(68.3%)、CYFRA21-1(50.5%)、癌胚抗原(45.5%)、组织多肽抗原(30.7%)和鳞状细胞癌相关抗原(5.9%)。建立了用于区分小细胞肺癌的预测模型,其曲线下面积最高(0.888;95%置信区间:0.846-0.929),敏感性为 71.3%,特异性为 95.0%,阳性预测值为 49.0%,阴性预测值为 98.0%。

结论

联合肿瘤标志物可以提高小细胞肺癌鉴别诊断的效果。已经建立了一个用于小细胞肺癌鉴别诊断的预测模型,具有较好的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验