Han Sang A, Qutaish Hamzeh, Park Min-Sik, Moon Janghyuk, Kim Jung Ho
Institute for Superconducting & Electronic Materials (ISEM), Australian Institute of Innovative Materials (AIIM), University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia.
Department of Advanced Materials Engineering for Information and electronic, Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
Chem Asian J. 2021 Dec 13;16(24):4010-4017. doi: 10.1002/asia.202101108. Epub 2021 Nov 12.
Utilization of lithium (Li) metal anode is highly desirable for achieving high energy density batteries. Even so, the unavoidable features of Li dendritic growth and inactive Li are still the main factors that hinder its practical application. During plating and stripping, the solid electrolyte interphase (SEI) layer can provide passivation, playing an important role in preventing direct contact between the electrolyte and the electrode in Li metal batteries. Because of complexities of the electrolyte chemical and electrochemical reactions, the various formation mechanisms for the SEI are still not well understood. What we do know is that a strategic artificial SEI achieved through additives electrolyte can suppress the Li dendrites. Otherwise, the dendrites keep generating an abundance of irreversible Li, resulting in severe capacity loss, internal short-circuiting, and cell failure. In this minireview, we focus on the phenomenon of dendritic Li-growth and provide a brief overview of SEI formation. We finally provide some clear insights and perspectives toward practical application of Li metal batteries.
使用锂(Li)金属阳极对于实现高能量密度电池非常理想。即便如此,锂枝晶生长和无活性锂这些不可避免的特性仍是阻碍其实际应用的主要因素。在锂的沉积和剥离过程中,固体电解质界面(SEI)层可以提供钝化作用,在防止锂金属电池中电解质与电极直接接触方面发挥重要作用。由于电解质化学反应和电化学反应的复杂性,SEI的各种形成机制仍未得到很好的理解。我们所知道的是,通过添加剂电解质实现的战略性人工SEI可以抑制锂枝晶。否则,枝晶会持续产生大量不可逆锂,导致严重的容量损失、内部短路和电池失效。在这篇微型综述中,我们聚焦于锂枝晶生长现象,并简要概述SEI的形成。我们最终为锂金属电池的实际应用提供了一些清晰的见解和观点。