Ha Jaeyun, Lee Jinhee, Lee Garam, Kim Yong-Tae, Choi Jinsub
Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea.
Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu 59626, Republic of Korea.
ACS Appl Mater Interfaces. 2024 Jul 31;16(30):39427-39436. doi: 10.1021/acsami.4c08044. Epub 2024 Jul 19.
Li metal, with a high theoretical capacity, is considered the most promising anode for next-generation high-energy-density batteries. However, the commercialization of the Li metal anode is limited owing to its high reactivity, significant volume expansion, continuous solid electrolyte interphase (SEI) layer degradation caused by undesirable Li deposition, and uncontrollable dendrite growth. This study demonstrates the in situ construction of a LiCO-enriched SEI layer from NiCO nanowires on three-dimensional Ni foam. The lithiophilic LiCO-enriched SEI layer provides a uniform distribution of the electrical field and sufficient nucleation and deposition sites for Li without dendrite formation. Consequently, the stable LiCO-enriched SEI layer successfully inhibits the formation of lithium dendrites, resulting in reversible Li stripping/plating behavior, maintained over an extended period of 5000 h with a deposition capacity of 1 mAh cm at 1 mA cm. Additionally, a high cycling stability is observed in the full cell test with ∼70% capacity retention after 1300 cycles at 3 C. This approach offers a large-scale and facile synthesis process via the in situ precipitation growth of NiCO followed by lithiation to form LiCO. Furthermore, the significant stability of the LiCO-enriched SEI layer aids the design of in situ-constructed SEI layers for highly stable Li metal batteries.
锂金属具有高理论容量,被认为是下一代高能量密度电池最有前景的负极材料。然而,锂金属负极的商业化受到限制,原因在于其高反应活性、显著的体积膨胀、由不良锂沉积导致的连续固体电解质界面(SEI)层降解以及不可控的枝晶生长。本研究展示了在三维泡沫镍上由NiCO纳米线原位构建富含LiCO的SEI层。亲锂的富含LiCO的SEI层为锂提供了均匀分布的电场以及足够的成核和沉积位点,从而不会形成枝晶。因此,稳定的富含LiCO的SEI层成功抑制了锂枝晶的形成,实现了可逆的锂剥离/电镀行为,在1 mA cm的电流密度下,沉积容量为1 mAh cm时,可在长达5000小时的时间内保持稳定。此外,在全电池测试中观察到了高循环稳定性,在3 C的电流密度下经过1300次循环后容量保持率约为70%。这种方法通过NiCO的原位沉淀生长随后锂化形成LiCO,提供了一种大规模且简便的合成工艺。此外,富含LiCO的SEI层的显著稳定性有助于设计用于高稳定性锂金属电池的原位构建SEI层。