Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and.
The Texas Lung Injury Institute, Tyler, Texas.
Am J Respir Cell Mol Biol. 2022 Feb;66(2):171-182. doi: 10.1165/rcmb.2021-0175OC.
Mesothelial to mesenchymal transition (MesoMT) is one of the crucial mechanisms underlying pleural fibrosis, which results in restrictive lung disease. DOCK2 (dedicator of cytokinesis 2) plays important roles in immune functions; however, its role in pleural fibrosis, particularly MesoMT, remains unknown. We found that amounts of DOCK2 and the MesoMT marker α-SMA (α-smooth muscle actin) were significantly elevated and colocalized in the thickened pleura of patients with nonspecific pleuritis, suggesting the involvement of DOCK2 in the pathogenesis of MesoMT and pleural fibrosis. Likewise, data from three different pleural fibrosis models (TGF-β [transforming growth factor-β], carbon black/bleomycin, and streptococcal empyema) consistently demonstrated DOCK2 upregulation and its colocalization with α-SMA in the pleura. In addition, induced DOCK2 colocalized with the mesothelial marker calretinin, implicating DOCK2 in the regulation of MesoMT. Our data also showed that DOCK2-knockout mice were protected from -induced pleural fibrosis, impaired lung compliance, and collagen deposition. To determine the involvement of DOCK2 in MesoMT, we treated primary human pleural mesothelial cells with the potent MesoMT inducer TGF-β. TGF-β significantly induced DOCK2 expression in a time-dependent manner, together with α-SMA, collagen 1, and fibronectin. Furthermore, DOCK2 knockdown significantly attenuated TGF-β-induced α-SMA, collagen 1, and fibronectin expression, suggesting the importance of DOCK2 in TGF-β-induced MesoMT. DOCK2 knockdown also inhibited TGF-β-induced Snail upregulation, which may account for its role in regulating MesoMT. Taken together, the current study provides evidence that DOCK2 contributes to the pathogenesis of pleural fibrosis by mediating MesoMT and deposition of neomatrix and may represent a novel target for its prevention or treatment.
间皮向间充质转化(MesoMT)是胸膜纤维化的关键机制之一,导致限制性肺病。DOCK2(胞质分裂的 dedicator of cytokinesis 2)在免疫功能中发挥重要作用;然而,其在胸膜纤维化中的作用,特别是 MesoMT,仍然未知。我们发现,DOCK2 和 MesoMT 标志物 α-SMA(α-平滑肌肌动蛋白)的含量在非特异性胸膜炎患者的增厚胸膜中显著升高并共定位,表明 DOCK2 参与了 MesoMT 和胸膜纤维化的发病机制。同样,来自三种不同的胸膜纤维化模型(TGF-β[转化生长因子-β]、碳黑/博来霉素和链球菌脓胸)的数据一致表明 DOCK2 上调及其与 α-SMA 在胸膜中的共定位。此外,诱导的 DOCK2 与间皮标志物 calretinin 共定位,表明 DOCK2 参与 MesoMT 的调节。我们的数据还表明,DOCK2 敲除小鼠免受 TGF-β 诱导的胸膜纤维化、肺顺应性降低和胶原沉积的影响。为了确定 DOCK2 在 MesoMT 中的参与,我们用有效的 MesoMT 诱导剂 TGF-β 处理原代人胸膜间皮细胞。TGF-β 以时间依赖性方式显著诱导 DOCK2 的表达,同时诱导 α-SMA、胶原 1 和纤维连接蛋白。此外,DOCK2 敲低显著减弱 TGF-β 诱导的 α-SMA、胶原 1 和纤维连接蛋白表达,表明 DOCK2 在 TGF-β 诱导的 MesoMT 中重要。DOCK2 敲低也抑制 TGF-β 诱导的 Snail 上调,这可能是其调节 MesoMT 的作用机制。总之,本研究提供了证据表明,DOCK2 通过介导 MesoMT 和新生基质的沉积参与胸膜纤维化的发病机制,可能成为其预防或治疗的新靶点。