Suppr超能文献

多视图图嵌入聚类网络:联合自监督和块对角表示。

Multi-view graph embedding clustering network: Joint self-supervision and block diagonal representation.

机构信息

State Key Laboratory of Integrated Services Networks, Xidian University, Shaanxi 710071, China.

Beijing Aerospace Automatic Control Institute, Beijing 100854, China.

出版信息

Neural Netw. 2022 Jan;145:1-9. doi: 10.1016/j.neunet.2021.10.006. Epub 2021 Oct 25.

Abstract

Multi-view clustering has become an active topic in artificial intelligence. Yet, similar investigation for graph-structured data clustering has been absent so far. To fill this gap, we present a Multi-View Graph embedding Clustering network (MVGC). Specifically, unlike traditional multi-view construction methods, which are only suitable to describe Euclidean structure data, we leverage Euler transform to augment the node attribute, as a new view descriptor, for non-Euclidean structure data. Meanwhile, we impose block diagonal representation constraint, which is measured by the ℓ-norm, on self-expression coefficient matrix to well explore the cluster structure. By doing so, the learned view-consensus coefficient matrix well encodes the discriminative information. Moreover, we make use of the learned clustering labels to guide the learnings of node representation and coefficient matrix, where the latter is used in turn to conduct the subsequent clustering. In this way, clustering and representation learning are seamlessly connected, with the aim to achieve better clustering performance. Extensive experimental results indicate that MVGC is superior to 11 state-of-the-art methods on four benchmark datasets. In particular, MVGC achieves an Accuracy of 96.17% (53.31%) on the ACM (IMDB) dataset, which is an up to 2.85% (1.97%) clustering performance improvement compared with the strongest baseline.

摘要

多视图聚类已经成为人工智能领域的一个活跃话题。然而,目前对于图结构化数据聚类的类似研究还很少。为了填补这一空白,我们提出了一种多视图图嵌入聚类网络(MVGC)。具体来说,与传统的仅适用于描述欧几里得结构数据的多视图构建方法不同,我们利用欧拉变换来扩充节点属性,作为新的视图描述符,用于非欧几里得结构数据。同时,我们对自表达系数矩阵施加块对角表示约束(由 ℓ 范数度量),以很好地探索聚类结构。通过这样做,学习到的视图一致性系数矩阵很好地编码了判别信息。此外,我们利用学习到的聚类标签来指导节点表示和系数矩阵的学习,后者反过来用于进行后续的聚类。这样,聚类和表示学习就无缝地连接在一起,旨在实现更好的聚类性能。在四个基准数据集上的广泛实验结果表明,MVGC 在 11 种最先进的方法中表现优异。特别是,MVGC 在 ACM(IMDB)数据集上的准确率达到了 96.17%(53.31%),与最强基线相比,聚类性能提高了 2.85%(1.97%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验