Suppr超能文献

钙钛矿太阳能电池中晶界处的等离激元诱导陷阱填充

Plasmon-induced trap filling at grain boundaries in perovskite solar cells.

作者信息

Yao Kai, Li Siqi, Liu Zhiliang, Ying Yiran, Dvořák Petr, Fei Linfeng, Šikola Tomáš, Huang Haitao, Nordlander Peter, Jen Alex K-Y, Lei Dangyuan

机构信息

Institute of Photovoltaics/Department of Materials Science and Engineering, Nanchang University, Nanchang, 330031, China.

Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.

出版信息

Light Sci Appl. 2021 Oct 28;10(1):219. doi: 10.1038/s41377-021-00662-y.

Abstract

The deep-level traps induced by charged defects at the grain boundaries (GBs) of polycrystalline organic-inorganic halide perovskite (OIHP) films serve as major recombination centres, which limit the device performance. Herein, we incorporate specially designed poly(3-aminothiophenol)-coated gold (Au@PAT) nanoparticles into the perovskite absorber, in order to examine the influence of plasmonic resonance on carrier dynamics in perovskite solar cells. Local changes in the photophysical properties of the OIHP films reveal that plasmon excitation could fill trap sites at the GB region through photo-brightening, whereas transient absorption spectroscopy and density functional theory calculations correlate this photo-brightening of trap states with plasmon-induced interfacial processes. As a result, the device achieved the best efficiency of 22.0% with robust operational stability. Our work provides unambiguous evidence for plasmon-induced trap occupation in OIHP and reveals that plasmonic nanostructures may be one type of efficient additives to overcome the recombination losses in perovskite solar cells and thin-film solar cells in general.

摘要

多晶有机-无机卤化物钙钛矿(OIHP)薄膜晶界处的带电缺陷所诱导的深层陷阱充当了主要的复合中心,这限制了器件性能。在此,我们将经过特殊设计的聚(3-氨基硫酚)包覆金(Au@PAT)纳米颗粒引入钙钛矿吸收层,以研究等离子体共振对钙钛矿太阳能电池中载流子动力学的影响。OIHP薄膜光物理性质的局部变化表明,等离子体激发可通过光致增亮填充晶界区域的陷阱位点,而瞬态吸收光谱和密度泛函理论计算将陷阱态的这种光致增亮与等离子体诱导的界面过程联系起来。结果,该器件实现了22.0%的最佳效率以及稳健的运行稳定性。我们的工作为OIHP中等离子体诱导的陷阱占据提供了明确证据,并表明等离子体纳米结构可能是一种通用的有效添加剂,可克服钙钛矿太阳能电池和薄膜太阳能电池中的复合损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9003/8553803/e2c9a5fe162a/41377_2021_662_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验