Sherkar Tejas S, Momblona Cristina, Gil-Escrig Lidón, Ávila Jorge, Sessolo Michele, Bolink Henk J, Koster L Jan Anton
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
Instituto de Ciencia Molecular, Universidad de Valencia, C/Catedrático J. Beltrán 2, 46980 Paterna Valencia, Spain.
ACS Energy Lett. 2017 May 12;2(5):1214-1222. doi: 10.1021/acsenergylett.7b00236. Epub 2017 May 2.
Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p-i-n and n-i-p CHNHPbI solar cells, including the light intensity dependence of the open-circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain boundaries (GBs), their neutral (when filled with photogenerated charges) disposition along with the long-lived nature of holes leads to the high performance of PSCs. The sign of the traps (when filled) is of little importance in efficient solar cells with compact morphologies (fused GBs, low trap density). On the other hand, solar cells with noncompact morphologies (open GBs, high trap density) are sensitive to the sign of the traps and hence to the cell preparation methods. Even in the presence of traps at GBs, trap-assisted recombination at interfaces (between the transport layers and the perovskite) is the dominant loss mechanism. We find a direct correlation between the density of traps, the density of mobile ionic defects, and the degree of hysteresis observed in the current-voltage (-) characteristics. The presence of defect states or mobile ions not only limits the device performance but also plays a role in the - hysteresis.
陷阱辅助复合尽管与传统无机太阳能电池相比更低,但仍是钙钛矿太阳能电池(PSC)中的主要复合机制,并限制了其效率。我们研究了PSC中主要陷阱辅助复合通道(晶界和界面)的属性及其与缺陷离子的相关性。我们通过使用经过验证的器件模型,使模拟结果与高效真空沉积的p-i-n和n-i-p CHNHPbI太阳能电池的实验数据相拟合来实现这一点,这些实验数据包括开路电压和填充因子的光强依赖性。我们发现,尽管在界面和晶界(GB)处存在陷阱,但它们的中性(当填充有光生电荷时)状态以及空穴的长寿命性质导致了PSC的高性能。在具有致密形貌(融合GB,低陷阱密度)的高效太阳能电池中,陷阱(填充时)的符号不太重要。另一方面,具有非致密形貌(开放GB,高陷阱密度)的太阳能电池对陷阱的符号敏感,因此对电池制备方法也敏感。即使在GB处存在陷阱,界面处(传输层与钙钛矿之间)的陷阱辅助复合仍是主要的损耗机制。我们发现陷阱密度、可移动离子缺陷密度与电流-电压(I-V)特性中观察到的滞后程度之间存在直接相关性。缺陷态或可移动离子的存在不仅限制了器件性能,而且在滞后现象中也起作用。