Suppr超能文献

使用回归向量-随机梯度下降分类器(RV-SGDC)对员工评价进行情感分类。

Sentiment classification for employees reviews using regression vector- stochastic gradient descent classifier (RV-SGDC).

作者信息

Gaye Babacar, Zhang Dezheng, Wulamu Aziguli

机构信息

School of Computer and Communication Engineering, University of Science and Technology, Beijing, China.

出版信息

PeerJ Comput Sci. 2021 Sep 23;7:e712. doi: 10.7717/peerj-cs.712. eCollection 2021.

Abstract

The satisfaction of employees is very important for any organization to make sufficient progress in production and to achieve its goals. Organizations try to keep their employees satisfied by making their policies according to employees' demands which help to create a good environment for the collective. For this reason, it is beneficial for organizations to perform staff satisfaction surveys to be analyzed, allowing them to gauge the levels of satisfaction among employees. Sentiment analysis is an approach that can assist in this regard as it categorizes sentiments of reviews into positive and negative results. In this study, we perform experiments for the world's big six companies and classify their employees' reviews based on their sentiments. For this, we proposed an approach using lexicon-based and machine learning based techniques. Firstly, we extracted the sentiments of employees from text reviews and labeled the dataset as positive and negative using TextBlob. Then we proposed a hybrid/voting model named Regression Vector-Stochastic Gradient Descent Classifier (RV-SGDC) for sentiment classification. RV-SGDC is a combination of logistic regression, support vector machines, and stochastic gradient descent. We combined these models under a majority voting criteria. We also used other machine learning models in the performance comparison of RV-SGDC. Further, three feature extraction techniques: term frequency-inverse document frequency (TF-IDF), bag of words, and global vectors are used to train learning models. We evaluated the performance of all models in terms of accuracy, precision, recall, and F1 score. The results revealed that RV-SGDC outperforms with a 0.97 accuracy score using the TF-IDF feature due to its hybrid architecture.

摘要

员工满意度对于任何组织在生产中取得足够进展并实现其目标都非常重要。组织试图通过根据员工需求制定政策来使员工保持满意,这有助于为集体营造良好的环境。因此,组织开展员工满意度调查并进行分析是有益的,这能让他们衡量员工的满意度水平。情感分析是一种在这方面可以提供帮助的方法,因为它将评论的情感分类为积极和消极结果。在本研究中,我们对全球六大公司进行了实验,并根据员工评论的情感对其进行分类。为此,我们提出了一种基于词典和机器学习技术的方法。首先,我们从文本评论中提取员工的情感,并使用TextBlob将数据集标记为积极和消极。然后我们提出了一种名为回归向量 - 随机梯度下降分类器(RV - SGDC)的混合/投票模型用于情感分类。RV - SGDC是逻辑回归、支持向量机和随机梯度下降的组合。我们在多数投票标准下将这些模型结合起来。在RV - SGDC的性能比较中,我们还使用了其他机器学习模型。此外,三种特征提取技术:词频 - 逆文档频率(TF - IDF)、词袋模型和全局向量被用于训练学习模型。我们从准确率、精确率、召回率和F1分数方面评估了所有模型的性能。结果表明,由于其混合架构,使用TF - IDF特征的RV - SGDC以0.97的准确率得分表现最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8733/8507482/02522d07ee04/peerj-cs-07-712-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验