Janjua Sadaf Hussain, Siddiqui Ghazanfar Farooq, Sindhu Muddassar Azam, Rashid Umer
Department of Computer Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
PeerJ Comput Sci. 2021 Apr 13;7:e433. doi: 10.7717/peerj-cs.433. eCollection 2021.
Social media is a vital source to produce textual data, further utilized in various research fields. It has been considered an essential foundation for organizations to get valuable data to assess the users' thoughts and opinions on a specific topic. Text classification is a procedure to assign tags to predefined classes automatically based on their contents. The aspect-based sentiment analysis to classify the text is challenging. Every work related to sentiment analysis approached this issue as the current research usually discusses the document-level and overall sentence-level analysis rather than the particularities of the sentiments. This research aims to use Twitter data to perform a finer-grained sentiment analysis at aspect-level by considering explicit and implicit aspects. This study proposes a new Multi-level Hybrid Aspect-Based Sentiment Classification (MuLeHyABSC) approach by embedding a feature ranking process with an amendment of feature selection method for Twitter and sentiment classification comprising of Artificial Neural Network; Multi-Layer Perceptron (MLP) is used to attain improved results. In this study, different machine learning classification methods were also implemented, including Random Forest (RF), Support Vector Classifier (SVC), and seven more classifiers to compare with the proposed classification method. The implementation of the proposed hybrid method has shown better performance and the efficiency of the proposed system was validated on multiple Twitter datasets to manifest different domains. We achieved better results for all Twitter datasets used for the validation purpose of the proposed method with an accuracy of 78.99%, 84.09%, 80.38%, 82.37%, and 84.72%, respectively, compared to the baseline approaches. The proposed approach revealed that the new hybrid aspect-based text classification functionality is enhanced, and it outperformed the existing baseline methods for sentiment classification.
社交媒体是生成文本数据的重要来源,这些文本数据在各个研究领域中得到进一步利用。它被认为是组织获取有价值数据以评估用户对特定主题的想法和意见的重要基础。文本分类是一种根据文本内容自动为预定义类别分配标签的过程。基于方面的情感分析对文本进行分类具有挑战性。与情感分析相关的每项工作都将此问题视为当前研究通常讨论的文档级和整体句子级分析,而不是情感的特殊性。本研究旨在通过考虑显式和隐式方面,利用推特数据在方面级别进行更细粒度的情感分析。本研究提出了一种新的基于多级别混合方面的情感分类(MuLeHyABSC)方法,通过嵌入特征排序过程并修正推特的特征选择方法以及由人工神经网络组成的情感分类;使用多层感知器(MLP)以获得更好的结果。在本研究中,还实施了不同的机器学习分类方法,包括随机森林(RF)、支持向量分类器(SVC)以及其他七种分类器,以与所提出的分类方法进行比较。所提出的混合方法的实施显示出更好的性能,并且所提出系统的效率在多个推特数据集上得到验证,以体现不同领域。与基线方法相比,我们在所使用的用于验证所提出方法的所有推特数据集上分别取得了更好的结果,准确率分别为78.99%、84.09%、80.38%、82.37%和84.72%。所提出的方法表明,新的基于混合方面的文本分类功能得到了增强,并且在情感分类方面优于现有的基线方法。