Suppr超能文献

机器学习揭示了女性慢性盆腔疼痛的新关联因素。

Machine Learning Revealed New Correlates of Chronic Pelvic Pain in Women.

作者信息

Elgendi Mohamed, Allaire Catherine, Williams Christina, Bedaiwy Mohamed A, Yong Paul J

机构信息

School of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.

Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.

出版信息

Front Digit Health. 2020 Dec 18;2:600604. doi: 10.3389/fdgth.2020.600604. eCollection 2020.

Abstract

Chronic pelvic pain affects one in seven women worldwide, and there is an urgent need to reduce its associated significant costs and to improve women's health. There are many correlated factors associated with chronic pelvic pain (CPP), and analyzing them simultaneously can be complex and involves many challenges. A newly developed interaction ensemble, referred to as INTENSE, was implemented to investigate this research gap. When applied, INTENSE aggregates three machine learning (ML) methods, which are unsupervised, as follows: interaction principal component analysis (IPCA), hierarchical cluster analysis (HCA), and centroid-based clustering (CBC). For our proposed research, we used INTENSE to uncover novel knowledge, which revealed new interactions in a sample of 656 patients among 25 factors: age, parity, ethnicity, body mass index, endometriosis, irritable bowel syndrome, painful bladder syndrome, pelvic floor tenderness, abdominal wall pain, depression score, anxiety score, Pain Catastrophizing Scale, family history of chronic pain, new or re-referral, age when first experienced pain, pain duration, surgery helpful for pain, infertility, smoking, alcohol use, trauma, dysmenorrhea, deep dyspareunia, CPP, and the Endometriosis Health Profile for functional quality of life. INTENSE indicates that CPP and the Endometriosis Health Profile are correlated with depression score, anxiety score, and the Pain Catastrophizing Scale. Other insights derived from these ML methods include the finding that higher body mass index was clustered with smoking and a history of life trauma. As well, sexual pain (deep dyspareunia) was found to be associated with musculoskeletal pain contributors (abdominal wall pain and pelvic floor tenderness). Therefore, INTENSE provided expert-like reasoning without training any model or prior knowledge of CPP. ML has the potential to identify novel relationships in the etiology of CPP, and thus can drive innovative future research.

摘要

慢性盆腔疼痛影响着全球七分之一的女性,迫切需要降低与之相关的巨大成本并改善女性健康。慢性盆腔疼痛(CPP)存在许多相关因素,同时分析这些因素可能很复杂且面临诸多挑战。为填补这一研究空白,采用了一种新开发的交互集成方法,称为INTENSE。应用时,INTENSE聚合了三种无监督机器学习(ML)方法:交互主成分分析(IPCA)、层次聚类分析(HCA)和基于质心的聚类(CBC)。在我们提出的研究中,我们使用INTENSE来揭示新知识,这在656名患者的样本中揭示了25个因素之间的新相互作用:年龄、产次、种族、体重指数、子宫内膜异位症、肠易激综合征、膀胱疼痛综合征、盆底压痛、腹壁疼痛、抑郁评分、焦虑评分、疼痛灾难化量表、慢性疼痛家族史、新转诊或再次转诊、首次经历疼痛的年龄、疼痛持续时间、手术对疼痛的帮助、不孕、吸烟、饮酒、创伤、痛经、深部性交痛、CPP以及用于功能生活质量的子宫内膜异位症健康概况。INTENSE表明,CPP和子宫内膜异位症健康概况与抑郁评分、焦虑评分和疼痛灾难化量表相关。这些ML方法得出的其他见解包括,较高的体重指数与吸烟和生活创伤史聚集在一起。此外,发现性疼痛(深部性交痛)与肌肉骨骼疼痛因素(腹壁疼痛和盆底压痛)有关。因此,INTENSE无需训练任何模型或具备CPP的先验知识就能提供类似专家的推理。ML有潜力识别CPP病因中的新关系,从而推动未来的创新性研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12cd/8521902/4317dd71210d/fdgth-02-600604-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验