文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于颞叶癫痫源区定位的机器学习:量化多模态临床症状学与影像学一致性的价值

Machine Learning for Localizing Epileptogenic-Zone in the Temporal Lobe: Quantifying the Value of Multimodal Clinical-Semiology and Imaging Concordance.

作者信息

Alim-Marvasti Ali, Pérez-García Fernando, Dahele Karan, Romagnoli Gloria, Diehl Beate, Sparks Rachel, Ourselin Sebastien, Clarkson Matthew J, Duncan John S

机构信息

Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.

Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.

出版信息

Front Digit Health. 2021 Feb 10;3:559103. doi: 10.3389/fdgth.2021.559103. eCollection 2021.


DOI:10.3389/fdgth.2021.559103
PMID:34713078
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8521800/
Abstract

Epilepsy affects 50 million people worldwide and a third are refractory to medication. If a discrete cerebral focus or network can be identified, neurosurgical resection can be curative. Most excisions are in the temporal-lobe, and are more likely to result in seizure-freedom than extra-temporal resections. However, less than half of patients undergoing surgery become entirely seizure-free. Localizing the epileptogenic-zone and individualized outcome predictions are difficult, requiring detailed evaluations at specialist centers. We used bespoke natural language processing to text-mine 3,800 electronic health records, from 309 epilepsy surgery patients, evaluated over a decade, of whom 126 remained entirely seizure-free. We investigated the diagnostic performances of machine learning models using set-of-semiology (SoS) with and without hippocampal sclerosis (HS) on MRI as features, using STARD criteria. Support Vector Classifiers (SVC) and Gradient Boosted (GB) decision trees were the best performing algorithms for temporal-lobe epileptogenic zone localization (cross-validated Matthews correlation coefficient (MCC) SVC 0.73 ± 0.25, balanced accuracy 0.81 ± 0.14, AUC 0.95 ± 0.05). Models that only used seizure semiology were not always better than internal benchmarks. The combination of multimodal features, however, enhanced performance metrics including MCC and normalized mutual information (NMI) compared to either alone ( < 0.0001). This combination of semiology and HS on MRI increased both cross-validated MCC and NMI by over 25% (NMI, SVC SoS: 0.35 ± 0.28 vs. SVC SoS+HS: 0.61 ± 0.27). Machine learning models using only the set of seizure semiology (SoS) cannot unequivocally perform better than benchmarks in temporal epileptogenic-zone localization. However, the combination of SoS with an imaging feature (HS) enhance epileptogenic lobe localization. We quantified this added NMI value to be 25% in absolute terms. Despite good performance in localization, no model was able to predict seizure-freedom better than benchmarks. The methods used are widely applicable, and the performance enhancements by combining other clinical, imaging and neurophysiological features could be similarly quantified. Multicenter studies are required to confirm generalizability. Wellcome/EPSRC Center for Interventional and Surgical Sciences (WEISS) (203145Z/16/Z).

摘要

癫痫影响着全球5000万人,其中三分之一的患者对药物治疗无效。如果能够确定离散的脑病灶或网络,神经外科手术切除可能会治愈疾病。大多数切除手术在颞叶进行,相比颞叶外切除,颞叶切除更有可能实现无癫痫发作。然而,接受手术的患者中不到一半能完全摆脱癫痫发作。定位致痫区和进行个体化预后预测很困难,需要在专科中心进行详细评估。我们使用定制的自然语言处理技术对3800份电子健康记录进行文本挖掘,这些记录来自309例接受癫痫手术的患者,评估时间超过十年,其中126例患者完全摆脱了癫痫发作。我们使用STARD标准,研究了以癫痫发作症状学集合(SoS)为特征、有无海马硬化(HS)的机器学习模型在磁共振成像(MRI)上的诊断性能。支持向量分类器(SVC)和梯度提升(GB)决策树是颞叶致痫区定位表现最佳的算法(交叉验证马修斯相关系数(MCC),SVC为0.73±0.25,平衡准确率为0.81±(0.14,曲线下面积(AUC)为0.95±0.05)。仅使用癫痫发作症状学的模型并不总是优于内部基准。然而与单独使用相比,多模态特征的组合提高了包括MCC和归一化互信息(NMI)在内的性能指标(<0.0001)。癫痫发作症状学和MRI上的HS相结合,使交叉验证的MCC和NMI均提高了25%以上(NMI,SVC SoS:0.35±0.28 对比 SVC SoS+HS:0.61±0.27)。仅使用癫痫发作症状学集合(SoS)的机器学习模型在颞叶致痫区定位中,表现不一定比基准更好。然而,SoS与成像特征(HS)的组合增强了致痫叶的定位。我们将这种增加的NMI值绝对量化为25%。尽管在定位方面表现良好,但没有模型在预测无癫痫发作方面比基准更好。所使用的方法具有广泛适用性,通过结合其他临床、成像和神经生理学特征实现的性能提升也可以类似地进行量化。需要进行多中心研究以确认其普遍性。惠康/工程和物理科学研究委员会介入与外科科学中心(WEISS)(203145Z/16/Z)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806a/8521800/7ebfc2079fbf/fdgth-03-559103-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806a/8521800/66ad575ca4c4/fdgth-03-559103-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806a/8521800/b244ef4e0e4c/fdgth-03-559103-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806a/8521800/823f2dc35a4a/fdgth-03-559103-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806a/8521800/7ebfc2079fbf/fdgth-03-559103-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806a/8521800/66ad575ca4c4/fdgth-03-559103-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806a/8521800/b244ef4e0e4c/fdgth-03-559103-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806a/8521800/823f2dc35a4a/fdgth-03-559103-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/806a/8521800/7ebfc2079fbf/fdgth-03-559103-g0004.jpg

相似文献

[1]
Machine Learning for Localizing Epileptogenic-Zone in the Temporal Lobe: Quantifying the Value of Multimodal Clinical-Semiology and Imaging Concordance.

Front Digit Health. 2021-2-10

[2]
Improving the accuracy of epileptogenic zone localization in stereo EEG with machine learning algorithms.

Brain Res. 2023-12-1

[3]
Early identification of seizure freedom with medical treatment in patients with mesial temporal lobe epilepsy and hippocampal sclerosis.

J Neurol. 2023-5

[4]
Probabilistic landscape of seizure semiology localizing values.

Brain Commun. 2022-5-19

[5]
Seizure semiology: its value and limitations in localizing the epileptogenic zone.

J Clin Neurol. 2012-12-21

[6]
Hippocampal sclerosis--origins and imaging.

Epilepsia. 2012-9

[7]
Multimodal data and machine learning for surgery outcome prediction in complicated cases of mesial temporal lobe epilepsy.

Comput Biol Med. 2015-9

[8]
Value of semiology in predicting epileptogenic zone and surgical outcome following frontal lobe epilepsy surgery.

Seizure. 2023-3

[9]
Lateralizing and localizing value of seizure semiology: Comparison with scalp EEG, MRI and PET in patients successfully treated with resective epilepsy surgery.

Seizure. 2018-9-5

[10]
[Surgical treatment of medically refractory epilepsy in childhood].

No To Hattatsu. 2001-3

引用本文的文献

[1]
NLP-based tools for localization of the epileptogenic zone in patients with drug-resistant focal epilepsy.

Sci Rep. 2024-1-29

[2]
Identifying epilepsy surgery referral candidates with natural language processing in an Australian context.

Epilepsia Open. 2024-4

[3]
The Application of Deep Learning to Electroencephalograms, Magnetic Resonance Imaging, and Implants for the Detection of Epileptic Seizures: A Narrative Review.

Cureus. 2023-7-25

[4]
Transforming epilepsy research: A systematic review on natural language processing applications.

Epilepsia. 2023-2

[5]
Multimodal machine learning in precision health: A scoping review.

NPJ Digit Med. 2022-11-7

[6]
Artificial intelligence-based methods for fusion of electronic health records and imaging data.

Sci Rep. 2022-10-26

[7]
Probabilistic landscape of seizure semiology localizing values.

Brain Commun. 2022-5-19

本文引用的文献

[1]
The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation.

BMC Genomics. 2020-1-2

[2]
High-performance medicine: the convergence of human and artificial intelligence.

Nat Med. 2019-1-7

[3]
Deep learning applied to whole-brain connectome to determine seizure control after epilepsy surgery.

Epilepsia. 2018-8-10

[4]
Automated analysis of seizure semiology and brain electrical activity in presurgery evaluation of epilepsy: A focused survey.

Epilepsia. 2017-11

[5]
Machine Learning and Neurosurgical Outcome Prediction: A Systematic Review.

World Neurosurg. 2017-10-3

[6]
Derivation and initial validation of a surgical grading scale for the preliminary evaluation of adult patients with drug-resistant focal epilepsy.

Epilepsia. 2017-5

[7]
Preoperative prediction of temporal lobe epilepsy surgery outcome.

Epilepsy Res. 2016-11

[8]
Semiology of hypermotor (hyperkinetic) seizures.

Epilepsy Behav. 2016-1

[9]
Localization value of seizure semiology analyzed by the conditional inference tree method.

Epilepsy Res. 2015-9

[10]
Multimodal data and machine learning for surgery outcome prediction in complicated cases of mesial temporal lobe epilepsy.

Comput Biol Med. 2015-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索