Suppr超能文献

利用机器学习算法提高立体脑电图中致痫区定位的准确性。

Improving the accuracy of epileptogenic zone localization in stereo EEG with machine learning algorithms.

作者信息

Jose Bijoy, Gopinath Siby, Vijayanatha Kurup Arjun, Nair Manjusha, Pillai Ashok, Kumar Anand, Parasuram Harilal

机构信息

Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India; Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.

Department of Computer Science and Applications, Amrita Vishwa Vidyapeetham, Amritapuri, India.

出版信息

Brain Res. 2023 Dec 1;1820:148546. doi: 10.1016/j.brainres.2023.148546. Epub 2023 Aug 24.

Abstract

The precise identification of the epileptogenic zone (EZ) is paramount in the presurgical evaluation of epilepsy patients to ensure successful surgical outcomes. The analysis of Stereo EEG, an instrumental tool for EZ localization, poses considerable challenges even for experienced epileptologists. Consequently, the development of machine learning (ML)-based computational tools for enhanced EZ localization is imperative. In this investigation, we developed ML models utilizing Stereo EEG from 15 patients, who remained seizure-free (Engel 1 a-d) following EZ resection, over an average follow-up period of 44.4 months. Utilizing Delphos and MNI detectors, spikes and High Frequency Oscillations (HFOs) were identified from Stereo EEG in Resected Zone (RZ) and non-Resected Zone (non-RZ). Linear and non-linear features were estimated from each modality using MATLAB. A total of 27,744 spikes, 7,790 ripples, and 7,632 fast ripples, along with their combinations, were employed to train the ML models. The Gradient Boosting classifier demonstrated the highest prediction accuracy of 98.5% for EZ localization in Mesial Temporal Lobe Epilepsy (MTLE) when trained with features derived from the spike-ripple combination. In the case of Neocortical Epilepsy (NE), the Extra Trees classifier achieved an accuracy of 87.6% when utilizing features from fast ripples. The Random Forest, Extra Trees, and Gradient Boosting algorithms were the most effective for predicting the RZ. Linear features outperformed non-linear features in predicting epileptogenic zones within the epileptic brain. Our study establishes the capability of ML methodologies in localizing epileptogenic zones with high accuracy. Future studies that focus on increasing the training sample size and incorporating more advanced machine learning (ML) algorithms have the potential to significantly improve the accuracy of these models in pinpointing epileptogenic networks. Additionally, implementing this ML approach across multiple research centers would contribute to the broader validation and generalizability of this technique.

摘要

在癫痫患者的术前评估中,精确识别致痫区(EZ)对于确保手术成功至关重要。立体脑电图(Stereo EEG)作为EZ定位的一种工具,即使对于经验丰富的癫痫专家而言,其分析也面临着相当大的挑战。因此,开发基于机器学习(ML)的计算工具以增强EZ定位势在必行。在本研究中,我们利用15例患者的立体脑电图开发了ML模型,这些患者在EZ切除术后平均随访44.4个月,仍无癫痫发作(Engel 1 a - d级)。利用德尔福斯(Delphos)和蒙特利尔神经研究所(MNI)探测器,从切除区(RZ)和非切除区(非RZ)的立体脑电图中识别出棘波和高频振荡(HFOs)。使用MATLAB从每种模态估计线性和非线性特征。总共27,744个棘波、7,790个涟漪波和7,632个快涟漪波,以及它们的组合,被用于训练ML模型。当使用从棘波 - 涟漪波组合派生的特征进行训练时,梯度提升分类器在颞叶内侧癫痫(MTLE)的EZ定位中表现出最高预测准确率,为98.5%。在新皮质癫痫(NE)的情况下,当利用快涟漪波的特征时,极端随机树分类器的准确率达到87.6%。随机森林、极端随机树和梯度提升算法在预测RZ方面最为有效。在预测癫痫脑内的致痫区时,线性特征优于非线性特征。我们的研究确立了ML方法在高精度定位致痫区方面的能力。未来专注于增加训练样本量并纳入更先进机器学习(ML)算法的研究,有可能显著提高这些模型在精确识别致痫网络方面的准确性。此外,在多个研究中心实施这种ML方法将有助于该技术更广泛的验证和推广。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验