Suppr超能文献

深度学习在脑电图、磁共振成像及植入物用于癫痫发作检测中的应用:一项叙述性综述

The Application of Deep Learning to Electroencephalograms, Magnetic Resonance Imaging, and Implants for the Detection of Epileptic Seizures: A Narrative Review.

作者信息

Singh Arihant, Velagala Vivek R, Kumar Tanishq, Dutta Rajoshee R, Sontakke Tushar

机构信息

Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND.

出版信息

Cureus. 2023 Jul 25;15(7):e42460. doi: 10.7759/cureus.42460. eCollection 2023 Jul.

Abstract

Epilepsy is a neurological disorder characterized by recurrent seizures affecting millions worldwide. Medically intractable seizures in epilepsy patients are not only detrimental to the quality of life but also pose a significant threat to their safety. Outcomes of epilepsy therapy can be improved by early detection and intervention during the interictal window period. Electroencephalography is the primary diagnostic tool for epilepsy, but accurate interpretation of seizure activity is challenging and highly time-consuming. Machine learning (ML) and deep learning (DL) algorithms enable us to analyze complex EEG data, which can not only help us diagnose but also locate epileptogenic zones and predict medical and surgical treatment outcomes. DL models such as convolutional neural networks (CNNs), inspired by visual processing, can be used to classify EEG activity. By applying preprocessing techniques, signal quality can be enhanced by denoising and artifact removal. DL can also be incorporated into the analysis of magnetic resonance imaging (MRI) data, which can help in the localization of epileptogenic zones in the brain. Proper detection of these zones can help in good neurosurgical outcomes. Recent advancements in DL have facilitated the implementation of these systems in neural implants and wearable devices, allowing for real-time seizure detection. This has the potential to transform the management of drug-refractory epilepsy. This review explores the application of ML and DL techniques to Electroencephalograms (EEGs), MRI, and wearable devices for epileptic seizure detection. This review briefly explains the fundamentals of both artificial intelligence (AI) and DL, highlighting these systems' potential advantages and undeniable limitations.

摘要

癫痫是一种神经系统疾病,其特征是反复发作的癫痫发作,全球数百万人受其影响。癫痫患者的药物难治性癫痫发作不仅会损害生活质量,还会对他们的安全构成重大威胁。在发作间期窗口期进行早期检测和干预可以改善癫痫治疗的效果。脑电图是癫痫的主要诊断工具,但对癫痫发作活动的准确解读具有挑战性且非常耗时。机器学习(ML)和深度学习(DL)算法使我们能够分析复杂的脑电图数据,这不仅有助于我们进行诊断,还能定位致痫区并预测药物和手术治疗的结果。受视觉处理启发的深度学习模型,如卷积神经网络(CNN),可用于对脑电图活动进行分类。通过应用预处理技术,可以通过去噪和去除伪迹来提高信号质量。深度学习还可以纳入磁共振成像(MRI)数据的分析中,这有助于在大脑中定位致痫区。正确检测这些区域有助于获得良好的神经外科手术结果。深度学习的最新进展促进了这些系统在神经植入物和可穿戴设备中的应用,实现了实时癫痫发作检测。这有可能改变药物难治性癫痫的管理方式。本综述探讨了机器学习和深度学习技术在脑电图、磁共振成像和可穿戴设备用于癫痫发作检测方面的应用。本综述简要解释了人工智能(AI)和深度学习的基本原理,强调了这些系统的潜在优势和不可否认的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/789b/10457132/1203d2a1c946/cureus-0015-00000042460-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验