Kamimura Hermes A S, Saharkhiz Niloufar, Lee Stephen A, Konofagou Elisa E
Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA.
IEEE Open J Ultrason Ferroelectr Freq Control. 2021;1:1-10. doi: 10.1109/ojuffc.2021.3085539. Epub 2021 Jun 3.
Ultrasound attenuation through soft tissues can produce an acoustic radiation force (ARF) and heating. The ARF-induced displacements and temperature evaluations can reveal tissue properties and provide insights into focused ultrasound (FUS) bio-effects. In this study, we describe an interleaving pulse sequence tested in a tissue-mimicking phantom that alternates FUS and plane-wave imaging pulses at a 1 kHz frame rate. The FUS is amplitude modulated, enabling the simultaneous evaluation of tissue-mimicking phantom displacement using harmonic motion imaging (HMI) and temperature rise using thermal strain imaging (TSI). The parameters were varied with a spatial peak temporal average acoustic intensity ( ) ranging from 1.5 to 311 W.cm, mechanical index () from 0.43 to 4.0, and total energy () from 0.24 to 83 J.cm. The HMI and TSI processing could estimate displacement and temperature independently for temperatures below 1.80°C and displacements up to ~117 μm ( <311 W.cm, <4.0, and <83 J.cm) indicated by a steady-state tissue-mimicking phantom displacement throughout the sonication and a comparable temperature estimation with simulations in the absence of tissue-mimicking phantom motion. The TSI estimations presented a mean error of ±0.03°C versus thermocouple estimations with a mean error of ±0.24°C. The results presented herein indicate that HMI can operate at diagnostic-temperature levels (i.e., <1°C) even when exceeding diagnostic acoustic intensity levels (720 mW.cm < < 207 W.cm). In addition, the combined HMI and TSI can potentially be used for simultaneous evaluation of safety during tissue elasticity imaging as well as FUS mechanism involved in novel ultrasound applications such as ultrasound neuromodulation and tumor ablation.
超声在软组织中的衰减可产生声辐射力(ARF)和热效应。由ARF引起的位移和温度评估能够揭示组织特性,并为聚焦超声(FUS)的生物效应提供见解。在本研究中,我们描述了一种在组织仿体中测试的交错脉冲序列,该序列以1 kHz的帧率交替发射FUS和平面波成像脉冲。FUS采用幅度调制,能够使用谐波运动成像(HMI)同时评估组织仿体的位移,并使用热应变成像(TSI)评估温度升高。参数变化范围为:空间峰值时间平均声强( )从1.5到311 W·cm,机械指数( )从0.43到4.0,总能量( )从0.24到83 J·cm。对于低于1.80°C的温度和高达约117μm的位移( <311 W·cm, <4.0, <83 J·cm),HMI和TSI处理能够独立估计位移和温度,这通过在整个超声处理过程中组织仿体的稳态位移以及在没有组织仿体运动的情况下与模拟结果相当的温度估计得以表明。TSI估计与热电偶估计相比,平均误差为±0.03°C,热电偶估计的平均误差为±0.24°C。本文给出的结果表明,即使超过诊断声强水平(720 mW·cm < < 207 W·cm),HMI仍可在诊断温度水平(即<1°C)下运行。此外,结合HMI和TSI有可能用于在组织弹性成像过程中同时评估安全性,以及用于涉及新型超声应用(如超声神经调节和肿瘤消融)的FUS机制。