Suppr超能文献

统计运动学建模:概念与模型有效性。

Statistical kinematic modelling: concepts and model validity.

作者信息

Duquesne Kate, Galibarov Pavel, Salazar-Torres Jose-de-Jesus, Audenaert Emmanuel

机构信息

Department Human Structure & Repair, University Ghent, Ghent, Belgium.

AnyBody Technology A/S, Aalborg, Denmark.

出版信息

Comput Methods Biomech Biomed Engin. 2022 Jul;25(9):1028-1039. doi: 10.1080/10255842.2021.1995722. Epub 2021 Oct 29.

Abstract

Data reduction techniques are applied to reduce the volume of data while maintaining its integrity. For cyclic motion data, a reliable overview comparing these methods is lacking. Therefore, this study aims to evaluate the features of the different data reduction techniques by applying them to large public data sets. The periodicity of cyclic motion can be exploited by either analysing a single cycle or studying a series of cycles. Analysing single cycles requires a pre-processing step to isolate the amplitude variability. Three different alignment techniques were evaluated, namely Linear length normalisation (LLN), piecewise LLN (PLLN) and continuous registration (CR). CR showed to remove the most phase variation. For the data reduction, three techniques were assessed (i.e., principal component analysis (PCA), principal polynomial analysis (PPA) and multivariate functional PCA (MFPCA)) based on the in- and out-of-sample error, the compactness and the computation time. The differences were found to be minimal. From our results, PPA appeared to be most useful for data compression. Further, we recommend PCA and MFPCA for classification and feature extraction purposes. We suggest the use of PCA when computation time is key and we advise the use of MFPCA when the inclusion of different data sources is desired. In contrast, the analysis of a series of cycles requires a pre-processing step to decompose the series. Further, a regression model was used to compensate for the difference in fundamental frequency. PCA on FC and MFPCA with splines were applied on the frequency compensated curves. Both methods performed as good.

摘要

数据缩减技术用于在保持数据完整性的同时减少数据量。对于循环运动数据,缺乏对这些方法进行可靠比较的综述。因此,本研究旨在通过将不同的数据缩减技术应用于大型公共数据集来评估其特征。循环运动的周期性可以通过分析单个周期或研究一系列周期来利用。分析单个周期需要一个预处理步骤来分离幅度变异性。评估了三种不同的对齐技术,即线性长度归一化(LLN)、分段LLN(PLLN)和连续配准(CR)。CR显示去除的相位变化最多。对于数据缩减,基于样本内和样本外误差、紧凑性和计算时间评估了三种技术(即主成分分析(PCA)、主多项式分析(PPA)和多元功能PCA(MFPCA))。发现差异最小。从我们的结果来看,PPA似乎对数据压缩最有用。此外,我们推荐将PCA和MFPCA用于分类和特征提取目的。当计算时间是关键时,我们建议使用PCA;当需要包含不同数据源时,我们建议使用MFPCA。相比之下,分析一系列周期需要一个预处理步骤来分解该系列。此外,使用回归模型来补偿基频的差异。将基于FC的PCA和带样条的MFPCA应用于频率补偿曲线。两种方法表现相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验