IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):8874-8895. doi: 10.1109/TPAMI.2021.3123686. Epub 2022 Nov 7.
High dynamic range (HDR) imaging is a technique that allows an extensive dynamic range of exposures, which is important in image processing, computer graphics, and computer vision. In recent years, there has been a significant advancement in HDR imaging using deep learning (DL). This study conducts a comprehensive and insightful survey and analysis of recent developments in deep HDR imaging methodologies. We hierarchically and structurally group existing deep HDR imaging methods into five categories based on (1) number/domain of input exposures, (2) number of learning tasks, (3) novel sensor data, (4) novel learning strategies, and (5) applications. Importantly, we provide a constructive discussion on each category regarding its potential and challenges. Moreover, we review some crucial aspects of deep HDR imaging, such as datasets and evaluation metrics. Finally, we highlight some open problems and point out future research directions.
高动态范围 (HDR) 成像是一种能够实现广泛动态范围曝光的技术,在图像处理、计算机图形学和计算机视觉中都很重要。近年来,深度学习 (DL) 在 HDR 成像方面取得了重大进展。本研究对深度学习 HDR 成像方法的最新进展进行了全面而深入的调查和分析。我们根据(1)输入曝光的数量/域、(2)学习任务的数量、(3)新型传感器数据、(4)新型学习策略和(5)应用,将现有的深度学习 HDR 成像方法分层和结构化地分为五类。重要的是,我们针对每个类别提供了关于其潜力和挑战的建设性讨论。此外,我们还回顾了深度学习 HDR 成像的一些关键方面,例如数据集和评估指标。最后,我们强调了一些开放性问题,并指出了未来的研究方向。