Suppr超能文献

深度学习在医学图像分析中的最新进展和临床应用。

Recent advances and clinical applications of deep learning in medical image analysis.

机构信息

School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA.

School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China.

出版信息

Med Image Anal. 2022 Jul;79:102444. doi: 10.1016/j.media.2022.102444. Epub 2022 Apr 4.

Abstract

Deep learning has received extensive research interest in developing new medical image processing algorithms, and deep learning based models have been remarkably successful in a variety of medical imaging tasks to support disease detection and diagnosis. Despite the success, the further improvement of deep learning models in medical image analysis is majorly bottlenecked by the lack of large-sized and well-annotated datasets. In the past five years, many studies have focused on addressing this challenge. In this paper, we reviewed and summarized these recent studies to provide a comprehensive overview of applying deep learning methods in various medical image analysis tasks. Especially, we emphasize the latest progress and contributions of state-of-the-art unsupervised and semi-supervised deep learning in medical image analysis, which are summarized based on different application scenarios, including classification, segmentation, detection, and image registration. We also discuss major technical challenges and suggest possible solutions in the future research efforts.

摘要

深度学习在开发新的医学图像处理算法方面受到了广泛的关注,基于深度学习的模型在各种医学成像任务中取得了显著的成功,以支持疾病的检测和诊断。尽管取得了成功,但深度学习模型在医学图像分析中的进一步改进主要受到缺乏大型、标注良好数据集的限制。在过去的五年中,许多研究都集中在解决这一挑战上。在本文中,我们回顾和总结了这些最近的研究,提供了一个全面的综述,介绍了深度学习方法在各种医学图像分析任务中的应用。特别是,我们强调了最新的无监督和半监督深度学习在医学图像分析中的进展和贡献,这些贡献是基于不同的应用场景进行总结的,包括分类、分割、检测和图像配准。我们还讨论了主要的技术挑战,并为未来的研究工作提出了可能的解决方案。

相似文献

1
Recent advances and clinical applications of deep learning in medical image analysis.
Med Image Anal. 2022 Jul;79:102444. doi: 10.1016/j.media.2022.102444. Epub 2022 Apr 4.
2
Medical image identification methods: A review.
Comput Biol Med. 2024 Feb;169:107777. doi: 10.1016/j.compbiomed.2023.107777. Epub 2023 Dec 5.
3
Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis.
Med Image Anal. 2019 May;54:280-296. doi: 10.1016/j.media.2019.03.009. Epub 2019 Mar 29.
7
Learning with limited annotations: A survey on deep semi-supervised learning for medical image segmentation.
Comput Biol Med. 2024 Feb;169:107840. doi: 10.1016/j.compbiomed.2023.107840. Epub 2023 Dec 16.
8
Deep computational pathology in breast cancer.
Semin Cancer Biol. 2021 Jul;72:226-237. doi: 10.1016/j.semcancer.2020.08.006. Epub 2020 Aug 17.
9
PyMIC: A deep learning toolkit for annotation-efficient medical image segmentation.
Comput Methods Programs Biomed. 2023 Apr;231:107398. doi: 10.1016/j.cmpb.2023.107398. Epub 2023 Feb 7.
10
Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
Comput Methods Programs Biomed. 2022 Nov;226:107099. doi: 10.1016/j.cmpb.2022.107099. Epub 2022 Sep 2.

引用本文的文献

4
Large Language Models in Medical Image Analysis: A Systematic Survey and Future Directions.
Bioengineering (Basel). 2025 Jul 29;12(8):818. doi: 10.3390/bioengineering12080818.
6
Artificial intelligence in disease diagnostics: a comprehensive narrative review of current advances, applications, and future challenges in healthcare.
Ann Med Surg (Lond). 2025 May 26;87(7):4237-4245. doi: 10.1097/MS9.0000000000003423. eCollection 2025 Jul.
7
Highly Accelerated Dual-Pose Medical Image Registration via Improved Differential Evolution.
Sensors (Basel). 2025 Jul 25;25(15):4604. doi: 10.3390/s25154604.
9
AI-Based Classification of Mild Cognitive Impairment and Cognitively Normal Patients.
J Clin Med. 2025 Jul 25;14(15):5261. doi: 10.3390/jcm14155261.
10
An optimized multi-task contrastive learning framework for HIFU lesion detection and segmentation.
Sci Rep. 2025 Aug 13;15(1):29666. doi: 10.1038/s41598-025-99783-2.

本文引用的文献

1
GANs for medical image analysis.
Artif Intell Med. 2020 Sep;109:101938. doi: 10.1016/j.artmed.2020.101938. Epub 2020 Aug 9.
2
Normative ascent with local gaussians for unsupervised lesion detection.
Med Image Anal. 2021 Dec;74:102208. doi: 10.1016/j.media.2021.102208. Epub 2021 Aug 17.
3
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
4
SANet: A Slice-Aware Network for Pulmonary Nodule Detection.
IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4374-4387. doi: 10.1109/TPAMI.2021.3065086. Epub 2022 Jul 1.
5
A survey on incorporating domain knowledge into deep learning for medical image analysis.
Med Image Anal. 2021 Apr;69:101985. doi: 10.1016/j.media.2021.101985. Epub 2021 Jan 30.
6
Momentum contrastive learning for few-shot COVID-19 diagnosis from chest CT images.
Pattern Recognit. 2021 May;113:107826. doi: 10.1016/j.patcog.2021.107826. Epub 2021 Jan 16.
7
Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study.
Med Image Anal. 2021 Apr;69:101952. doi: 10.1016/j.media.2020.101952. Epub 2021 Jan 2.
8
Learning From Multiple Datasets With Heterogeneous and Partial Labels for Universal Lesion Detection in CT.
IEEE Trans Med Imaging. 2021 Oct;40(10):2759-2770. doi: 10.1109/TMI.2020.3047598. Epub 2021 Sep 30.
9
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
Nat Methods. 2021 Feb;18(2):203-211. doi: 10.1038/s41592-020-01008-z. Epub 2020 Dec 7.
10
Models Genesis.
Med Image Anal. 2021 Jan;67:101840. doi: 10.1016/j.media.2020.101840. Epub 2020 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验