Suppr超能文献

动态因果建模在大脑交互网络识别中的应用:系统综述。

Dynamic Causal Modeling on the Identification of Interacting Networks in the Brain: A Systematic Review.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:2299-2311. doi: 10.1109/TNSRE.2021.3123964. Epub 2021 Nov 9.

Abstract

Dynamic causal modeling (DCM) has long been used to characterize effective connectivity within networks of distributed neuronal responses. Previous reviews have highlighted the understanding of the conceptual basis behind DCM and its variants from different aspects. However, no detailed summary or classification research on the task-related effective connectivity of various brain regions has been made formally available so far, and there is also a lack of application analysis of DCM for hemodynamic and electrophysiological measurements. This review aims to analyze the effective connectivity of different brain regions using DCM for different measurement data. We found that, in general, most studies focused on the networks between different cortical regions, and the research on the networks between other deep subcortical nuclei or between them and the cerebral cortex are receiving increasing attention, but far from the same scale. Our analysis also reveals a clear bias towards some task types. Based on these results, we identify and discuss several promising research directions that may help the community to attain a clear understanding of the brain network interactions under different tasks.

摘要

动态因果建模(DCM)长期以来一直用于描述分布式神经元反应网络内的有效连接。之前的综述从不同角度强调了对 DCM 及其变体的概念基础的理解。然而,迄今为止,尚未正式提供对各种脑区与任务相关的有效连接的详细总结或分类研究,并且对于血液动力学和电生理学测量,DCM 的应用分析也很缺乏。本综述旨在使用 DCM 分析不同测量数据下不同脑区的有效连接。我们发现,一般来说,大多数研究都集中在不同皮质区域之间的网络上,而对其他深部皮质下核团之间或它们与大脑皮质之间的网络的研究也越来越受到关注,但远未达到相同的规模。我们的分析还揭示了对某些任务类型的明显偏好。基于这些结果,我们确定并讨论了几个有前途的研究方向,这可能有助于该领域在不同任务下更清楚地理解脑网络的相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验