Zhang Yuhang, Sun Tao, Zang Boyang, Wan Sen
Department of Automation, Tsinghua University, Beijing, China.
Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
PLoS Comput Biol. 2025 Aug 21;21(8):e1013335. doi: 10.1371/journal.pcbi.1013335. eCollection 2025 Aug.
Decoding animal decision-making behavior from neural spike data emerges as a particularly challenging problem in neuroscience. To address this, we have devised a decision-making decoding model, incorporating a channel attention bi-directional long short-term memory network (CA-BiLSTM), with the aim of effectively parsing sparse neural spike data across multiple brain regions. Notably, the attention mechanism embedded within this model serves the crucial purpose of adeptly localizing neurons integral to decision-making stability within the task at hand. Specifically, when applied to the reproducible electrophysiology dataset from the International Brain Laboratory (IBL), our proposed model has demonstrated a remarkable capacity for accurately forecasting decision-making behavior in mice. Consequently, this investigation furnishes a novel perspective for unraveling the intricacies of neural decision-making mechanisms.
从神经脉冲数据中解码动物决策行为,已成为神经科学中一个特别具有挑战性的问题。为了解决这个问题,我们设计了一种决策解码模型,该模型结合了通道注意力双向长短期记忆网络(CA-BiLSTM),旨在有效解析多个脑区的稀疏神经脉冲数据。值得注意的是,该模型中嵌入的注意力机制具有关键作用,能够巧妙地定位对于当前任务中决策稳定性至关重要的神经元。具体而言,当应用于国际大脑实验室(IBL)的可重复电生理数据集时,我们提出的模型已展现出在准确预测小鼠决策行为方面的卓越能力。因此,这项研究为揭示神经决策机制的复杂性提供了一个全新的视角。