Suppr超能文献

通过表面增强拉曼光谱对卵巢癌细胞外囊泡进行表征。

Characterization of ovarian cancer-derived extracellular vesicles by surface-enhanced Raman spectroscopy.

机构信息

University of Western Ontario (Western University), Department of Chemistry, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.

University of Western Ontario (Western University), Department of Biochemistry, 1151 Richmond St., London, Ontario, N6A 5B7, Canada.

出版信息

Analyst. 2021 Nov 22;146(23):7194-7206. doi: 10.1039/d1an01586a.

Abstract

Ovarian cancer is the most lethal gynecological malignancy, owing to the fact that most cases are diagnosed at a late stage. To improve prognosis and reduce mortality, we must develop methods for the early diagnosis of ovarian cancer. A step towards early and non-invasive cancer diagnosis is through the utilization of extracellular vesicles (EVs), which are nanoscale, membrane-bound vesicles that contain proteins and genetic material reflective of their parent cell. Thus, EVs secreted by cancer cells can be thought of as cancer biomarkers. In this paper, we present gold nanohole arrays for the capture of ovarian cancer (OvCa)-derived EVs and their characterization by surface-enhanced Raman spectroscopy (SERS). For the first time, we have characterized EVs isolated from two established OvCa cell lines (OV-90, OVCAR3), two primary OvCa cell lines (EOC6, EOC18), and one human immortalized ovarian surface epithelial cell line (hIOSE) by SERS. We subsequently determined their main compositional differences by principal component analysis and were able to discriminate the groups by a logistic regression-based machine learning method with ∼99% accuracy, sensitivity, and specificity. The results presented here are a great step towards quick, facile, and non-invasive cancer diagnosis.

摘要

卵巢癌是最致命的妇科恶性肿瘤,因为大多数病例在晚期才被诊断出来。为了改善预后和降低死亡率,我们必须开发出早期诊断卵巢癌的方法。早期和非侵入性癌症诊断的一个步骤是通过利用细胞外囊泡(EVs),这些囊泡是纳米级的、膜结合的囊泡,其中包含反映其亲代细胞的蛋白质和遗传物质。因此,可以将癌细胞分泌的 EV 视为癌症生物标志物。在本文中,我们提出了用于捕获卵巢癌(OvCa)衍生的 EV 并通过表面增强拉曼光谱(SERS)对其进行表征的金纳米孔阵列。我们首次通过 SERS 对从两种已建立的 OvCa 细胞系(OV-90、OVCAR3)、两种原发性 OvCa 细胞系(EOC6、EOC18)和一种人永生化卵巢表面上皮细胞系(hIOSE)分离的 EV 进行了表征。随后,我们通过主成分分析确定了它们的主要组成差异,并能够通过基于逻辑回归的机器学习方法以约 99%的准确率、灵敏度和特异性来区分这些组。这里呈现的结果是朝着快速、简便和非侵入性癌症诊断迈出的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验