Jia Yaling, Xue Ziqian, Yang Jun, Liu Qinglin, Xian Jiahui, Zhong Yicheng, Sun Yamei, Zhang Xiuxiu, Liu Qinghua, Yao Daoxin, Li Guangqin
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
Angew Chem Int Ed Engl. 2022 Jan 10;61(2):e202110838. doi: 10.1002/anie.202110838. Epub 2021 Nov 25.
Accurately regulating the selectivity of the oxygen reduction reaction (ORR) is crucial to renewable energy storage and utilization, but challenging. A flexible alteration of ORR pathways on atomically dispersed Zn sites towards high selectivity ORR can be achieved by tailoring the coordination environment of the catalytic centers. The atomically dispersed Zn catalysts with unique O- and C-coordination structure (ZnO C) or N-coordination structure (ZnN ) can be prepared by varying the functional groups of corresponding MOF precursors. The coordination environment of as-prepared atomically dispersed Zn catalysts was confirmed by X-ray absorption fine structure (XAFs). Notably, the ZnN catalyst processes a 4 e ORR pathway to generate H O. However, controllably tailoring the coordination environment of atomically dispersed Zn sites, ZnO C catalyst processes a 2 e ORR pathway to generate H O with a near zero overpotential and high selectivity in 0.1 M KOH. Calculations reveal that decreased electron density around Zn in ZnO C lowers the d-band center of Zn, thus changing the intermediate adsorption and contributing to the high selectivity towards 2 e ORR.
精确调控氧还原反应(ORR)的选择性对于可再生能源的存储和利用至关重要,但颇具挑战性。通过调整催化中心的配位环境,可以灵活改变原子分散的锌位点上的ORR途径,以实现高选择性的ORR。通过改变相应MOF前驱体的官能团,可以制备具有独特O和C配位结构(ZnO C)或N配位结构(ZnN)的原子分散锌催化剂。通过X射线吸收精细结构(XAFs)证实了所制备的原子分散锌催化剂的配位环境。值得注意的是,ZnN催化剂通过4e ORR途径生成H O。然而,通过可控地调整原子分散锌位点的配位环境,ZnO C催化剂通过2e ORR途径在0.1 M KOH中以接近零的过电位和高选择性生成H O。计算表明,ZnO C中锌周围电子密度的降低降低了锌的d带中心,从而改变了中间体吸附,并有助于对2e ORR的高选择性。