Liang Shuang, Wu Qi, Wang Changhua, Wang Rui, Li Dashuai, Xing Yanmei, Jin Dexin, Ma He, Liu Yichun, Zhang Peng, Zhang Xintong
Key Laboratory of Ultraviolet-Emitting Materials and Technology of Chinese Ministry of Education, Northeast Normal University, Changchun 130024, China.
Department of Chemistry, Dalhousie University, Halifax B3H 4J3, Canada.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2410504121. doi: 10.1073/pnas.2410504121. Epub 2024 Aug 16.
Clean production of hydrogen peroxide (HO) with water, oxygen, and renewable energy is considered an important green synthesis route, offering a valuable substitute for the traditional anthraquinone method. Currently, renewable energy-driven production of HO mostly relies on soluble additives, such as electrolytes and sacrificial agents, inevitably compromising the purity and sustainability of HO. Herein, we develop a solution plasma catalysis technique that eliminates the need for soluble additives, enabling eco-friendly production of concentrated HO directly from water and O. Screening over 40 catalysts demonstrates the superior catalytic performance of carbon nitride interacting with discharge plasma in water. High-throughput density functional theory calculations for 68 models, along with machine learning using 29 descriptors, identify cyano carbon nitride (CCN) as the most efficient catalyst. Solution plasma catalysis with the CCN achieves concentrated HO of 20 mmol L, two orders of magnitude higher than photocatalysis by the same catalyst. Plasma diagnostics, isotope labeling, and COMSOL simulations collectively validate that the interplay of solution plasma and the CCN accounts for the significantly increased production of singlet oxygen and HO thereafter. Our findings offer an efficient and sustainable pathway for HO production, promising wide-ranging applications across the chemical industry, public health, and environmental remediation.
利用水、氧气和可再生能源清洁生产过氧化氢(HO)被认为是一条重要的绿色合成路线,为传统蒽醌法提供了一种有价值的替代方法。目前,可再生能源驱动的HO生产大多依赖于可溶性添加剂,如电解质和牺牲剂,这不可避免地会影响HO的纯度和可持续性。在此,我们开发了一种溶液等离子体催化技术,该技术无需可溶性添加剂,能够直接从水和O中以环保方式生产浓缩的HO。对40多种催化剂进行筛选表明,氮化碳与水中放电等离子体相互作用具有优异的催化性能。对68个模型进行高通量密度泛函理论计算,并使用29个描述符进行机器学习,确定氰基氮化碳(CCN)为最有效的催化剂。使用CCN进行溶液等离子体催化可实现20 mmol L的浓缩HO,比相同催化剂的光催化高出两个数量级。等离子体诊断、同位素标记和COMSOL模拟共同验证了溶液等离子体与CCN的相互作用是单线态氧和随后HO产量显著增加的原因。我们的研究结果为HO生产提供了一条高效且可持续的途径,有望在化学工业、公共卫生和环境修复等广泛领域得到应用。