Suppr超能文献

乌干达高度传播环境中环境协变量与疟疾发病率时间变化的关系:分布式滞后非线性分析。

Associations between environmental covariates and temporal changes in malaria incidence in high transmission settings of Uganda: a distributed lag nonlinear analysis.

机构信息

Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda.

Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda.

出版信息

BMC Public Health. 2021 Oct 30;21(1):1962. doi: 10.1186/s12889-021-11949-5.

Abstract

BACKGROUND

Environmental factors such as temperature, rainfall, and vegetation cover play a critical role in malaria transmission. However, quantifying the relationships between environmental factors and measures of disease burden relevant for public health can be complex as effects are often non-linear and subject to temporal lags between when changes in environmental factors lead to changes in malaria incidence. The study investigated the effect of environmental covariates on malaria incidence in high transmission settings of Uganda.

METHODS

This study leveraged data from seven malaria reference centres (MRCs) located in high transmission settings of Uganda over a 24-month period. Estimates of monthly malaria incidence (MI) were derived from MRCs' catchment areas. Environmental data including monthly temperature, rainfall, and normalized difference vegetation index (NDVI) were obtained from remote sensing sources. A distributed lag nonlinear model was used to investigate the effect of environmental covariates on malaria incidence.

RESULTS

Overall, the median (range) monthly temperature was 30 °C (26-47), rainfall 133.0 mm (3.0-247), NDVI 0.66 (0.24-0.80) and MI was 790 per 1000 person-years (73-3973). Temperature of 35 °C was significantly associated with malaria incidence compared to the median observed temperature (30 °C) at month lag 2 (IRR: 2.00, 95% CI: 1.42-2.83) and the increased cumulative IRR of malaria at month lags 1-4, with the highest cumulative IRR of 8.16 (95% CI: 3.41-20.26) at lag-month 4. Rainfall of 200 mm significantly increased IRR of malaria compared to the median observed rainfall (133 mm) at lag-month 0 (IRR: 1.24, 95% CI: 1.01-1.52) and the increased cumulative IRR of malaria at month lags 1-4, with the highest cumulative IRR of 1.99(95% CI: 1.22-2.27) at lag-month 4. Average NVDI of 0.72 significantly increased the cumulative IRR of malaria compared to the median observed NDVI (0.66) at month lags 2-4, with the highest cumulative IRR of 1.57(95% CI: 1.09-2.25) at lag-month 4.

CONCLUSIONS

In high-malaria transmission settings, high values of environmental covariates were associated with increased cumulative IRR of malaria, with IRR peaks at variable lag times. The complex associations identified are valuable for designing strategies for early warning, prevention, and control of seasonal malaria surges and epidemics.

摘要

背景

温度、降雨量和植被覆盖等环境因素对疟疾传播起着至关重要的作用。然而,量化环境因素与公共卫生相关的疾病负担衡量指标之间的关系可能很复杂,因为影响往往是非线性的,而且疟疾发病率变化与环境因素变化之间存在时间滞后。本研究旨在调查环境协变量对乌干达高传播地区疟疾发病率的影响。

方法

本研究利用了 24 个月期间位于乌干达高传播地区的七个疟疾参考中心(MRC)的数据。从 MRC 的集水区估算了每月疟疾发病率(MI)。从遥感源获得环境数据,包括月平均温度、降雨量和归一化差异植被指数(NDVI)。使用分布式滞后非线性模型来研究环境协变量对疟疾发病率的影响。

结果

总体而言,中位数(范围)月平均温度为 30°C(26-47),降雨量为 133.0 毫米(3.0-247),NDVI 为 0.66(0.24-0.80),疟疾发病率为 790 每 1000 人年(73-3973)。与观察到的中位数温度(30°C)相比,温度为 35°C 与疟疾发病率显著相关(IRR:2.00,95%CI:1.42-2.83),并且在 1-4 个月的滞后期内,疟疾的累积 IRR 增加,在滞后 4 个月时,累积 IRR 最高,为 8.16(95%CI:3.41-20.26)。降雨量为 200 毫米时,与观察到的中位数降雨量(133 毫米)相比,疟疾的 IRR 在滞后 0 个月时显著增加(IRR:1.24,95%CI:1.01-1.52),并且在 1-4 个月的滞后期内,疟疾的累积 IRR 增加,在滞后 4 个月时,累积 IRR 最高,为 1.99(95%CI:1.22-2.27)。平均 NDVI 为 0.72 时,与观察到的中位数 NDVI(0.66)相比,2-4 个月的疟疾累积 IRR 显著增加,在滞后 4 个月时,累积 IRR 最高,为 1.57(95%CI:1.09-2.25)。

结论

在高疟疾传播地区,环境协变量的高值与疟疾累积 IRR 的增加有关,在不同的滞后时间达到 IRR 峰值。确定的复杂关联对于设计季节性疟疾激增和流行的早期预警、预防和控制策略具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4213/8557030/bf75724b2ded/12889_2021_11949_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验