Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA.
Department of Epidemiology, The Herbert Wertheim School of Public Health and Human Longevity Science, UC San Diego, La Jolla, CA 92093, USA.
Aging (Albany NY). 2021 Oct 29;13(20):23471-23516. doi: 10.18632/aging.203660.
It is widely thought that individuals age at different rates. A method that measures "physiological age" or physiological aging rate independent of chronological age could therefore help elucidate mechanisms of aging and inform an individual's risk of morbidity and mortality. Here we present machine learning frameworks for inferring individual physiological age from a broad range of biochemical and physiological traits including blood phenotypes (e.g., high-density lipoprotein), cardiovascular functions (e.g., pulse wave velocity) and psychological traits (e.g., neuroticism) as main groups in two population cohorts SardiNIA (6,100 participants) and InCHIANTI (1,400 participants). The inferred physiological age was highly correlated with chronological age (R2 > 0.8). We further defined an individual's physiological aging rate (PAR) as the ratio of the predicted physiological age to the chronological age. Notably, PAR was a significant predictor of survival, indicating an effect of aging rate on mortality. Our trait-based PAR was correlated with DNA methylation-based epigenetic aging score (r = 0.6), suggesting that both scores capture a common aging process. PAR was also substantially heritable (h2~0.3), and a subsequent genome-wide association study of PAR identified significant associations with two genetic loci, one of which is implicated in telomerase activity. Our findings support PAR as a proxy for an underlying whole-body aging mechanism. PAR may thus be useful to evaluate the efficacy of treatments that target aging-related deficits and controllable epidemiological factors.
人们普遍认为个体衰老的速度不同。因此,一种能够衡量与实际年龄无关的“生理年龄”或生理衰老速度的方法,可以帮助阐明衰老的机制,并提示个体发病和死亡的风险。在这里,我们提出了一些机器学习框架,用于从广泛的生化和生理特征中推断个体的生理年龄,这些特征包括血液表型(如高密度脂蛋白)、心血管功能(如脉搏波速度)和心理特征(如神经质),这三个特征作为两个人群队列 SardiNIA(6100 名参与者)和 InCHIANTI(1400 名参与者)中的主要组。推断出的生理年龄与实际年龄高度相关(R2>0.8)。我们进一步将个体的生理衰老率(PAR)定义为预测的生理年龄与实际年龄的比值。值得注意的是,PAR 是生存的显著预测因子,表明衰老率对死亡率有影响。我们基于特征的 PAR 与基于 DNA 甲基化的表观遗传衰老评分(r=0.6)相关,表明这两个评分都捕捉到了一个共同的衰老过程。PAR 也具有相当大的遗传性(h2~0.3),随后对 PAR 的全基因组关联研究确定了与两个遗传位点的显著关联,其中一个与端粒酶活性有关。我们的研究结果支持 PAR 作为潜在的整体身体衰老机制的替代指标。PAR 可能因此可用于评估针对与衰老相关缺陷和可控制的流行病学因素的治疗效果。