School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States.
Acc Chem Res. 2021 Dec 7;54(23):4294-4304. doi: 10.1021/acs.accounts.1c00446. Epub 2021 Oct 31.
As renewable energy sources are either intermittent in nature or remote in location, developing cost-effective, sustainable, modular systems and technologies to store and transport renewables at an industrial scale is imperative. Storing cheap renewable electricity into chemical bonds (i.e., chemical energy storage) could be a transformative opportunity for reliable and resilient grid energy storage. This approach enables renewables to be stored and shipped similarly to fossil fuels. Currently, the chemical industry primarily consumes fossil feedstock as an energy source, which has been the standard for over a century. A paradigm shift is required to move toward a more sustainable route for chemical synthesis by electrifying and decarbonizing the modern chemical industry. As renewable electricity costs decrease, (photo)electrosynthesis is gaining interest for synthesizing high-value and high-energy fuels and molecules in a clean, sustainable, and decentralized manner.The nitrogen cycle is one of the Earth's most critical biogeochemical cycles since nitrogen is a vital element for all living organisms. Artificial nitrogen fixation via a (photo)electrochemical system powered by renewables provides an alternative route to resource- and carbon-intensive thermochemical processes. (Photo)electrochemical nitrogen fixation at a large scale necessitates the discovery of active, selective, and stable heterogeneous (photo)electrocatalysts. In addition, the use of advanced and spectroscopic techniques is needed to pinpoint the underlying reaction mechanisms. The selectivity of nitrogen (N) molecules on the catalyst surface and suppressing thermodynamically favorable side reactions (e.g., hydrogen evolution reaction) are the main bottlenecks in improving the rate of (photo)electrochemical nitrogen fixation in aqueous solutions. The rational design of electrode, electrolyte, and reactors is required to weaken the strong nitrogen-nitrogen triple bond (N≡N) at or near ambient conditions. This Account covers our group's recent advances in synthesizing shape-controlled hybrid plasmonic nanoparticles, including plasmonic-semiconductor and plasmonic-transition metal nanostructures with increased surface areas. The nanocatalysts' selectivity and activity toward nitrogen conversion are benchmarked in liquid- and gas-phase electrochemical systems. We leverage vibrational-type spectroscopy (i.e., surface-enhanced Raman spectroscopy (SERS)) to identify intermediate species relevant to nitrogen fixation at the electrode-electrolyte interface to gain mechanistic insights into reaction mechanisms, leading to the discovery of more efficient catalysts. SERS revealed that the nitrogen reduction reaction (NRR) to ammonia on hybrid plasmonic-transition metal nanoparticle surfaces (e.g., Pd-Ag) occurs through an associative mechanism. In the NRR process, hydrazine (NH) is consumed as an intermediate species. A femtosecond pulsed laser is used to synthesize hybrid plasmonic photocatalysts with homogeneously distributed Pd atoms on a Au nanorod surface, resulting in enhanced optoelectronic and catalytic properties. The overarching goal is to develop modular photoelectrochemical systems for long-duration renewable energy storage. In the context of nitrogen fixation, we aim to propose strategies to manage the nitrogen cycle through the interconversion of N and active nitrogen-containing compounds (e.g., NH, NO), enabling a circular nitrogen economy with sustainable and positive social and economic outcomes. The versatile approaches presented in this Account can inform future opportunities in (photo)electrochemical energy conversion systems and solar fuel-based applications.
由于可再生能源在性质上是间歇性的,或者在地理位置上是偏远的,因此开发具有成本效益、可持续性、模块化的系统和技术,以便在工业规模上存储和运输可再生能源是当务之急。将廉价的可再生电能存储在化学键中(即化学储能),对于可靠和有弹性的电网储能来说,可能是一个变革性的机会。这种方法可以使可再生能源以类似于化石燃料的方式进行存储和运输。目前,化学工业主要将化石原料作为能源消耗,这已经是一个多世纪以来的标准。需要进行范式转变,以使化学合成朝着更可持续的方向发展,实现现代化学工业的电气化和脱碳化。随着可再生电力成本的降低,(光电)合成越来越受到关注,用于以清洁、可持续和分散的方式合成高价值和高能量的燃料和分子。氮循环是地球最重要的生物地球化学循环之一,因为氮是所有生物的重要元素。通过由可再生能源供电的(光电)电化学系统进行人工固氮,为资源密集型和碳密集型热化学工艺提供了替代途径。(光电)电化学固氮在大规模上需要发现活性、选择性和稳定的多相(光电)电催化剂。此外,需要使用先进的光谱技术来确定潜在的反应机制。在催化剂表面上氮(N)分子的选择性和抑制热力学有利的副反应(例如,析氢反应)是提高水溶液中(光电)电化学固氮速率的主要瓶颈。需要对电极、电解质和反应器进行合理设计,以在环境条件下或接近环境条件下削弱氮-氮三键(N≡N)的强度。本账户涵盖了我们小组在合成形状可控的混合等离子体纳米粒子方面的最新进展,包括等离子体-半导体和等离子体-过渡金属纳米结构,其表面积增加。在液体和气相电化学系统中对纳米催化剂的氮转化的选择性和活性进行了基准测试。我们利用振动型光谱(即表面增强拉曼光谱(SERS))来识别与电极-电解质界面上氮固定相关的中间物种,以深入了解反应机制,从而发现更有效的催化剂。SERS 表明,在混合等离子体过渡金属纳米颗粒表面(例如 Pd-Ag)上,氮还原反应(NRR)到氨通过缔合机制发生。在 NRR 过程中,肼(NH)作为中间物种被消耗。飞秒脉冲激光用于在 Au 纳米棒表面上合成均匀分布 Pd 原子的混合等离子体光催化剂,从而增强光电和催化性能。总体目标是开发用于长期可再生能源存储的模块化光电化学系统。在固氮方面,我们旨在提出通过 N 和活性含氮化合物(例如 NH、NO)的相互转化来管理氮循环的策略,从而实现具有可持续性和积极的社会经济成果的循环氮经济。本账户中提出的多功能方法可以为(光电)电化学能量转换系统和基于太阳能燃料的应用提供未来的机会。